Skip to main content

Wine fermentation is characterized by complex chemical and microbial interactions. Competition for fermentable sugars and growth factors in the presence of SO2, followed by more anaerobic conditions and increasing levels of ethanol, provides an ideal background for fierce interactions among yeast, malolactic bacteria, and between yeast and malolactic bacteria. Lactic acid, acetic acid, hexanoic, octanoic and decanoic acids produced by yeast, SO2, H2O2, diacetyl, acetoin, antimicrobial peptides (e.g. bacteriocins produced by malolactic bacteria and killer toxins produced by yeast) and other yet unidentified low-molecular-mass signalling molecules, at various ratios, play a role in the regulation of microbial interactions. Little is known about the effect of mycelial fungi on yeast and malolactic bacteria. Mannoprotein and β-glucans produced by Botrytis cinerea inhibit the growth of Saccharomyces cerevisiae. Unidentified antibacterial cationic proteins produced by S. cerevisiae inhibit the growth of malolactic bacteria. Filamentous fungi may stimulate the growth of S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer R, Nel HA, Dicks LMT (2003) Pediocin PD-1 as a method to control growth ofOenococcus oeniin wine. Am J Enol Vitic 54:86–91

    CAS  Google Scholar 

  • Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine-a review. S Afr J Enol Vitic 21:27–51

    CAS  Google Scholar 

  • Bauer R, Wolfaardt GM, Dicks LMT (2002) Effect of bacteriocins pediocin PD-1, plantaricin 423 and nisin on biofilms ofOenococcus oenion a stainess steel surface. Am J Enol Vitic 53:191–196

    Google Scholar 

  • Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50:107–119

    CAS  Google Scholar 

  • Breukink E, De Kruijff B (1999) The lantibiotic nisin, a special case or not? Biochim Biophys Acta 1462: 223–234

    Article  PubMed  CAS  Google Scholar 

  • Brotz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42:154–160

    PubMed  CAS  Google Scholar 

  • Byczkowski JZ, Gessner T (1988) Biological role of superoxide ion-radical. Int J Biochem 20:569–580

    Article  PubMed  CAS  Google Scholar 

  • Capucho I, San Romao MV (1994) Effect of ethanol and fatty acids on malolactic activity ofLeuconostoc oenos. Appl Microbiol Biotechnol 42:391–395

    CAS  Google Scholar 

  • Caridi A, Corte V (1997) Inhibition of malolactic fermentation by cryotolerant yeast. Biotechnol Lett 19:723–726

    Article  CAS  Google Scholar 

  • Charoenchai C, Fleet GH, Henschke PA, Todd BEN (1997) Screening of non-Saccharomyceswine yeasts for the presence of extracellular hydrolytic enzymes. Aust J Grape Wine Res 3:2–8

    Article  CAS  Google Scholar 

  • Chen H, Hoover DG (2003) Bacteriocins and their Food Applications. Compr Rev Food Sci Food Safety 2:82–100

    CAS  Google Scholar 

  • Ciani M, Ferraro L (1998) Combined use of immobilisedCandida stellatacells andSaccharomyces cerevisiaeto improve the quality of wines. J Appl Bacteriol 85:247–254

    CAS  Google Scholar 

  • Comitini F, Ferreiti R, Clementi R, Mannazzu I, Ciani M (2005) Interactions betweenSaccharomyces cerevisiaeand malolactic bacteria: preliminary characterization of a yeast proteinaceus compound(s) active againstOenococcus oeni. J Appl Microbiol 99:105–111

    Article  PubMed  CAS  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005a) Bacteriocins: Developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  CAS  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005b) Bacterial lantibiotics: strategies to improve therapeutic potential. Curr Protein Pept Sci 6:61–75

    Article  CAS  Google Scholar 

  • Darriet P, Pons M, Henry R, Dummont O, Findeling V, Cartolaro P, Calonnec A, Dubourdieu D (2002) Impact odorants contributing to the fungus type aroma from grape berries contaminated by powdery mildew (Uncinula necator): incidence of enzymatic activities of the yeastSaccharomyces cerevisiae. J Agric Food Chem 50:3277–3282

    Article  PubMed  CAS  Google Scholar 

  • Davis CR, Wibowo D, Eschenbruch R, Lee TH, Fleet GH (1985) Practical implication of malolactic fermentation: A review. Am J Enol Vitic 36:290–301

    CAS  Google Scholar 

  • De Vuyst L, Vandamme E (1994) Bactericoins of lactic acid bacteria. Chapman and Hall,London

    Google Scholar 

  • Dick KJ, Molan PC, Eschenbruch R (1992) The isolation fromSaccharomyces cerevisiaeof two antibacterial cationic proteins that inhibit malolactic bacteria. Vitis 31:105–116

    CAS  Google Scholar 

  • Dizzy M, Bisson LF (2000) Proteolytic activity of yeast strains during grape juice fermentation.Am J Enol Vitic 51:155–167

    Google Scholar 

  • Doneche B (1993) Botrytized wines. In: G.H. Fleet (ed) Wine Microbiology and Biotechnology,Harwood, Chur, Switzerland, pp 327–353

    Google Scholar 

  • Driessen AJM, Van den Hooven HW, Kuiper W, Van de Kamp M, Sahl HG, Koning RNH,Konings WN (1995) Mechanistic studies of antibiotic-induced permeabilization of phospholi-pids-vesicles. Biochemistry 34:1606–1614

    Article  PubMed  CAS  Google Scholar 

  • Drysdale GS, Fleet GH (1988) Acetic acid bacteria in winemaking: a review. Am J Enol Vitic 39:143–153

    CAS  Google Scholar 

  • Du Toit M, Pretorius IS (2000) Microbial spoilage and preservation of wine: using weapons from nature's own arsenal-a review. S Afr J Enol Vitic 21:74–96

    Google Scholar 

  • Edwards R, Beelman B, Bartley CE, McConnell AL (1990) Production of decanoic and other volatile compounds and the growth of yeast and malolactic bacteria during vinification. Am J Enol Vitic 41:48–56

    CAS  Google Scholar 

  • Eglinton JM, Henschke PA (1996)Saccharomyces cerevisiaestrains AWRI 838, Lalvin EC1118 and Maurvin PDM do not produce excessive sulfur dioxide in white wine fermentations. Aust J Grape Wine Res 2:77–83

    Article  CAS  Google Scholar 

  • Eijsink VGH, Skeie M, Middelhoven PH, Brurberg MB, Nes IF (1998) Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 64:3275–3281

    PubMed  CAS  Google Scholar 

  • Emmett RW, Harris AR, Taylor RH, McGechan JK (1988) Grape diseases and vineyard protection.In: B.G. Coombe and P.R. Dry (eds) Viticulture Vol. 2, Winetitles, Adelaide, pp. 232–278

    Google Scholar 

  • Erten H (2002) Relations between elevated temperatures and fermentation behaviour ofKloeckera apiculataandSaccharomyces cerevisiaeassociated with winemaking in mixed cultures. World J Microbiol Biotechnol 18:373–378

    Article  CAS  Google Scholar 

  • Fleet GH (1998) Microbiology of alcoholic beverages. In: Wood BJ (ed) Microbiology of Fermented Foods, vol. 1, 2nd ed., Blackie Academic and Professional, London, pp 217–262

    Google Scholar 

  • Fleet GH (2001) Wine. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food Microbiology Fundamentals and Frontiers (2nd ed.) ASM Press, Washington, DC, pp. 747–772

    Google Scholar 

  • Fleet GH (2003) Yeasts interactions and wine flavour. Int J Food Microbiol 86:11–22

    Article  PubMed  CAS  Google Scholar 

  • Fleet GH, Heard GM (1993) Yeasts — growth during fermentation. In: Fleet GH (ed), Wine Microbiology and Biotechnology, Harwood, Chur, Switzerland, pp. 27–55

    Google Scholar 

  • Fornachon JCM (1968) Influence of different yeasts on growth of lactic acid bacteria in wine.J Sci Food Agric 19:374–378

    Article  PubMed  CAS  Google Scholar 

  • Fugelsang KC (1997) Wine microbiology. Chapman and Hall, New York

    Google Scholar 

  • Gao C, Fleet GH (1988) The effects of temperature and pH on the ethanol tolerance of the wine yeastsSaccharomyces cerevisiae, Candida stellataandKloeckera apiculata. J Appl Bacteriol 65:405–410

    CAS  Google Scholar 

  • Green G, Dicks LMT, Bruggeman G, Vandamme EJ, Chikindas ML (1997) Pediocin PD-1, a bactericidal antimicrobial peptide fromPediococcus damnosusNCFB 1832. J Appl Mirobiol 83:127–132

    Article  CAS  Google Scholar 

  • Guilloux-Benatier M, Le Fur Y, Feuillat M (1998) Influence of fatty acids on the growth of wine microorganismsSaccharomyces cerevisiaeandOenococcus oeni. J Ind Microbiol Biotech 20:144–149

    Article  CAS  Google Scholar 

  • Guriérrez AR, Epifanio S, Garijo P, Lopez R, Santamaria P (2001) Killer yeasts: incidence in the ecology of spontaneous fermentation. Am J Enol Vitic 52:352–356

    Google Scholar 

  • Hansen EH, Nissen P, Sommer P, Nielsen JC, Arneborg N (2001) The effect of oxygen on the survival of non-Saccharomycesyeasts during mixed culture fermentation of grape juice withSaccharomyces cerevisiae. J Appl Microbiol 91:541–547

    Article  CAS  Google Scholar 

  • Heard GM, Fleet GH (1988) The effects of temperature and pH on the growth of yeasts during the fermentation of grape juice. J Appl Bacteriol 65:23–28

    Google Scholar 

  • Henick-Kling T, Park YH (1994) Considerations for the use of yeast and bacterial starter cultures − SO2and timing of inoculation. Am J Enol Vitic 45:464–469

    Google Scholar 

  • Henschke P (1997) Wine yeast. In: Zimmerman FK, Entian KD (eds) Yeast Sugar Metabolism,Biochemistry, Genetics, Biotechnology and Applications, Technomic Publishing, Lancaster,UK, pp. 527–560

    Google Scholar 

  • Hocking AD, Varelis P, Pitt JI, Cameron SF, Leong SL (2003) Occurrence of ochratoxin A in Australian wine. Aust J Grape Wine Res 9:72–78

    Article  CAS  Google Scholar 

  • Hogan D, Kolter R (2002)Pseudomonas—Candidainteractions: an ecological role for virulence factors. Science 296:2229–2232

    Article  PubMed  CAS  Google Scholar 

  • Horn N, Martinez MI, Martinez JM, Hernandez PE, Gasson MJ, Rodriguez JM, Dodd HM (1999)Enhanced production of pediocin PA-1 and coproduction of nisin and pediocin PA-1 byLactococcus lactis. Appl Environ Microbiol 65:4443–4450

    PubMed  CAS  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungusCandida albicansis mediated by farnesol.Appl Environ Microbiol 67:2982–2992

    Article  PubMed  CAS  Google Scholar 

  • Jack RW, Tagg JR, Ray B (1995) Bacteriocins of Gram-positive bacteria. Microbiol Rev 59:171–200

    PubMed  CAS  Google Scholar 

  • Jay JM (2000) Modern Food Microbiology, 6th ed., Aspen Publishers, Maryland

    Google Scholar 

  • Kasjket ER (1987) Bioenergetics of lactic-acid bacteria — cytoplasmic pH and osmotolerance.FEMS Microbiol Rev 46:233–244

    Article  Google Scholar 

  • King SW, Beelman RB (1986) Metabolic interactions betweenSaccharomyces cerevisiaeandLeuconostoc oenosin a model grape juice/wine system. Am J Enol Vitic 37:53–60

    CAS  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–86

    PubMed  CAS  Google Scholar 

  • Lafon-Lafourcade S (1984) Souches de levures. Bull OIV 637:185–203

    Google Scholar 

  • Larsen JT, Nielsen JC, Kramp B, Richelieu M, Riisager MJ, Arneborg N, Edwards CG (2003) Impact of different strains ofSaccharomyces cerevisiaeon malolactic fermentation byOenococcus oeni. Am J Enol Vitic 54:246–251

    Google Scholar 

  • Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic-acid bacteria in food and food fermentations. FEMS Microbiol Rev 87:149–163

    Article  CAS  Google Scholar 

  • Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie van Leeuwenhoek 76:317–331

    Article  PubMed  CAS  Google Scholar 

  • Lonvaud-Funel A, Joyeux A (1993) Antagonism between lactic-acid bacteria of wines — inhibition ofLeuconostoc oenosbyLactobacillus plantarumandPediococcus pentosaceus. Food Microbiol 10:411–419

    Article  Google Scholar 

  • Lonvaud-Funel A, Joyeaux A, Desens C (1988) Inhibition of malolactic fermentation of wines by products of yeast metabolism. J Sci Food Agric 44:183–191

    Article  CAS  Google Scholar 

  • Lyons TP (2002) Natural products and programs 2002: navigating from niche markets to mainstream. In: Lyons TP, Jacques KA (eds), Nutritional Biotechnology in the Feed and Food Industries, Nottingham University Press, Nottingham, pp. 1–12

    Google Scholar 

  • Markaki P, Delpont-Binet C, Grosso F, Dragacci S (2001) Determination of ochratoxin A in red wine and vinegar by immunoaffinity high pressure liquid chromatography. J Food Prot 64:533–537

    PubMed  CAS  Google Scholar 

  • Markides A (1993) Factors influencing the growth of malolactic bacteria and malolactic activity in wine — interactions between wine yeast and lactic acid bacteria. Aust Grapegrow Winemak 352:108–111

    Google Scholar 

  • McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis and mode of action.FEMS Microbiol Rev 25:285–308

    Article  PubMed  CAS  Google Scholar 

  • Middleton E Jr, Chithan K (1993) The impact of plant flavanoides on mammalian biology:implications for immunity, inflammation and cancer. In: Harborne JB (ed). The Flavonoids:Advances in Research Since 1986, Chapman and Hill, London, UK

    Google Scholar 

  • Mortimer RK (2000) Kloeckeraapiculatacontrols the rates of natural fermentation. Riv Vitic Enol 53:61–68

    Google Scholar 

  • Musmanno RA, Maggio T, Coratza G (1999) Studies on strong and weak killer phenotypes of wine yeasts: production, activity of toxin in must, and its effect in mixed culture fermentation. J Appl Microbiol 87:932–938

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Zarazaga M, Saenz J, Ruiz-Larrea F, Torres C (2000) Bacteriocin production by lactic acid bacteria isolated from Rioja red wines. J Appl Microbiol 88:44–51

    Article  PubMed  CAS  Google Scholar 

  • Nel HA, Bauer R, Wolfaardt GM, Dicks LMT (2002) Effect of bacteriocins pediocin PD-1,plantaricin 423, and nisin on biofilms ofOenococcus oenion a stainless steel surface. Am J Enol Vitic 53:191–196

    CAS  Google Scholar 

  • Nguyen H, Panon G (1998) The yeastMetschnikowia pulcherrimahas an inhibitory effect against various yeast species. Sci Aliment 18:515–526

    Google Scholar 

  • Nissen-Meyer J, Holo H, Havarstein LS, Sletten K, Nes IF (1992) A Novel lactococcal bacteriocin whose activity depends on the complementary action of 2 peptides. J Bacteriol 174:5686–5692

    PubMed  CAS  Google Scholar 

  • Ohkuni K, Hayashi M, Yamashita I (1998) Bicarbonate-mediated social communication stimulates meiosis and sporulation ofSaccharomyces cerevisiae. Yeast 14:623–631

    Article  PubMed  CAS  Google Scholar 

  • Osborne JP, Edwards CG (2006) Inhibition of malolactic fermentation bySaccharomyces cerevisiaeduring alcoholic fermentation under low- and high nitrogen conditions: a study in synthetic media. Aust J Grape Wine Res 12:69–78

    Article  CAS  Google Scholar 

  • Palkova Z, Janderova B, Gabriel J, Zikanova B, Pospisek M, Forstova J (1997) Ammonia mediates communication between yeast colonies. Nature 390:532–536

    Article  PubMed  CAS  Google Scholar 

  • Patynowski RJ, Jiranek V, Markides A (2002) Yeast viability during fermentation andsur lieageing of a defined medium and subsequent growth ofOenococcus oeni. Aust J Grape Wine Res 8:62–69

    Article  Google Scholar 

  • Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL (2002) Inhibition ofCandida albicansbiofilm formation by farnesol, a quorum sensing molecule. Appl Environ Microbiol 68:5450–5463

    Article  CAS  Google Scholar 

  • Reed G, Nagodawithana TW (1988) Technology of yeast usage in winemaking. Am J Enol Vitic 39:83–90

    CAS  Google Scholar 

  • Riberau-Gayon P, Dubordieu D, Doneche B, Lonvaud A (1998) Les Bacterie acetiques. In: Dunod (ed), Trait d'enologie. Microbiologie du vin. Vinifications. Editions La Vigne, Paris, pp.225–236

    Google Scholar 

  • Richard P, Bakker BM, Teusink B, Van Dam K, Westerhoff HV (1996) Acetaldehyde mediates the synchronisation of sustained glycolytic oscillations in populations of yeast cells. Eur J Biochem 235:238–241

    Article  PubMed  CAS  Google Scholar 

  • Rojo-Bezares B, Sáez Y, Zarazaga M, Torres C, Ruiz-Larrea F (2007) Antimicrobial activity of nisin againstOenococcus oeniand other wine bacteria. Int J Food Microbiol 116:32–33

    Article  PubMed  CAS  Google Scholar 

  • Sage L, Krivobok S, Delbos E, Seigle-Murandi F, Creppy EE (2002) Fungal flora and ochratoxin A production in grape and musts from France. J Agric Food Chem 50:1306–1311

    Article  PubMed  CAS  Google Scholar 

  • Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16:70–78

    Article  CAS  Google Scholar 

  • Schoeman H, Vivier MA, Du Toit M, Dicks LMT, Pretorius IS (1999) The development of bactericidal yeast strains by expressing thePediococcus acidilacticipediocin gene (pedA) inSaccharomyces cerevisiae. Yeast 15:647–656

    Article  PubMed  CAS  Google Scholar 

  • Shimizu K (1993) Killer yeasts. In: Fleet GH (ed), Wine Microbiology and Biotechnology,Harwood, Chur, Switzerland, pp. 243–264

    Google Scholar 

  • Soden I, Francis L, Oakey H, Henschke PA (2000) Effects of co-fermentation withCandida stel-lataandSaccharomyces cerevisiaeon the aroma and composition of Chardonnay wine. Aust J Grape Wine Res 6:21–30

    Article  CAS  Google Scholar 

  • Sponholz W (1993) Wine spoilage by microorganisms. In: Fleet GH (ed), Wine Microbiology and Biotechnology, Harwood, Chur, Switzerland, pp. 395–420

    Google Scholar 

  • Stander MA, Steyn PS (2002) Survey of ochratoxin A in South African wines. S Afr J Enol Vitic 23:9–13

    CAS  Google Scholar 

  • Strasser de Saad AM, Manca de Nadra MC (1993) Characterization of bacteriocin produced byPediococcus pentosaceusfrom wine. J Appl Bacteriol 74:406–410

    PubMed  CAS  Google Scholar 

  • Strasser de Saad AM, Pasteris SE, Manca de Nadra MC (1995) Production and stability of pedi-ocin N5p in grape juice medium. J Appl Bacteriol 78:473–476

    PubMed  CAS  Google Scholar 

  • Stummer BE, Francis IL, Markides AJ, Scott ES (2003) The effect of powdery mildew infection of grape berries on juice and wine composition and on sensory properties of Chardonnay wines. Aust J Grape Wine Res 9:28–39

    Article  CAS  Google Scholar 

  • Tateo F, Bononi M (2001) Survey on ochratoxin in wines. Bull OIV 74:772–780

    CAS  Google Scholar 

  • Van Reenen CA, Chikindas ML, Van Zyl WH, Dicks LMT (2002) Characterization and heterolo-gous expression of a class IIa bacteriocin, plantaricin 423 fromLactobacillus plantarum423,inSaccharomyces cerevisiae. Int J Food Microbiol 81:29–40

    Article  Google Scholar 

  • Van Vuuren HJ, Jacobs CJ (1992) Killer yeasts in the wine industry — a review. Am J Enol Vitic 43:119–128

    Google Scholar 

  • Verellen TLJ, Bruggeman G, Van Reenen CA, Dicks LMT, Vandamme EJ (1998) Fermentation optimization of plantaricin 423, a bacteriocin produced byLactobacillus plantarum423.J Ferment Bioeng 86:174–179

    Article  CAS  Google Scholar 

  • Viegas CA, SaCorreia I (1997) Effects of low temperatures (9–33°C) and pH (3.3–5.7) in the lossofSaccharomyces cerevisiaeviability by combining lethal concentrations of ethanol with octanoic and decanoic acids. Int J Food Microbiol 34:267–277

    Article  PubMed  CAS  Google Scholar 

  • Wagner MK, Moberg LJ (1989) Present and future of use of traditional antimicrobials. Food Technol 43:143–147

    CAS  Google Scholar 

  • Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC (2001) Quorum-sensing in Gram negative bacteria. FEMS Microbiol Rev 25:365–404

    Article  PubMed  CAS  Google Scholar 

  • Wibowo D, Eschenbruch R, Davis C, Fleet GH, Lee TH (1985) Occurrence and growth of lactic acid bacteria in wine — a review. Am J Enol Vitic 36:302–312

    CAS  Google Scholar 

  • Wibowo D, Fleet GH, Lee TH, Eschenbruch R (1988) Factors affecting the induction of malolactic fermentation in red wine. J Appl Bacteriol 64:421–428

    CAS  Google Scholar 

  • Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HA (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dicks, L.M., Todorov, S., Endo, A. (2009). Microbial Interactions. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85463-0_18

Download citation

Publish with us

Policies and ethics