Lactic acid bacteria occur in habitats with a rich nutrition supply such as decomposing plant material and fruits as well as in food and in cavities of humans and animals. They can also be found on grapes, in grape must and wine. This group of bacteria is characterized by the production of lactic acid as major catabolic end product from glucose. The acidic conditions (pH: 3.0 - 3.5) of grape must and the increasing concentration of ethanol during must fermentation allow growth of only a few acid tolerant microbial groups such as lactic acid bacteria. Only 22 species of the genera Lactobacillus,Leuconostoc,Pediococcus, Oenococcus and Weissella have been isolated during wine making. Lactic acid bacteria ferment different monosaccharides and metabolize organic compounds of must. The catabolic acitivities have an influence on the stability and flavour of the wine. A few species are applied as starter cultures for the reduction of the acidity of wine. This chapter describes some characteristics of only wine-related lactic acid bacteria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibald F (1986) Manganese: its acquisition by and function in lactic acid bacteria. Crit Rev Microbiol 13:63–109PubMedCrossRefGoogle Scholar
  2. Archibald AR, Coapes HE (1971) The wall teichoic acids of Lactobacillus plantarum N.I.R.D.C106. Location of the phosphodiester groups and separation of the chains. Biochem J 124:449–460PubMedGoogle Scholar
  3. Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, von Wright A, Ouwehand AC (eds.) Lactic acid bacteria. Microbiological and functional aspects, 3rd ed. Marcel Dekker, New York, pp 1–66Google Scholar
  4. Blom H, Mörtvedt C (1991) Anti-microbial substances produced by food associated microorganisms. Biochem Soc Trans 19:694–698PubMedGoogle Scholar
  5. Björkroth J, Holzapfel W (2003) Genera Leuconostoc, Oenococcus and Weissella. In Dworkin M (ed.) The prokaryotes. Springer Verlag, Heidelberg, pp 267–319 (URL: http://link.springer. de/link/service/books)Google Scholar
  6. Caspritz G, Radler F (1983) Malolactic enzyme of Lactobacillus plantarum. Purification, properties, and distribution among bacteria. J Biol Chem 258:4907–4910Google Scholar
  7. Carr JG, Cutting CV, Whiting GC (1975) Lactic acid bacteria in beverages and food. Academic Press, LondonGoogle Scholar
  8. Cavin J-F, Schmitt P, Arias A, Lin J, Diviès C (1988) Plasmid profiles in Leuconostoc species. Microbiol Aliment Nutr 6:55–62Google Scholar
  9. Chen K-H, McFeeters RF (1986) Utilization of electron-acceptors for anaerobic metabolism by Lactobacillus plantarum. Enzymes and intermediates in the utilization of citrate. Food Microbiol 3:83–92CrossRefGoogle Scholar
  10. Chevallier B, Hubert JC, Kammerer B (1994) Determination of chromosome size and number of rrn loci in Lactobacillus plantarum by pulsed-field gel-electrophoresis. FEMS Microbiol Lett 120:51–56PubMedCrossRefGoogle Scholar
  11. Claus H (2007) Extracelluláre Enzyme und Peptide von Milchsáurebakterien: Relevanz für die Weinbereitung. Deut Lebensmittel-Rundschau 103:505–511Google Scholar
  12. Collins MD, Williams AM, Wallbanks S (1990) The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov. FEMS Microbiol Lett 70:255–262CrossRefGoogle Scholar
  13. Collins MD, Rodrigues UM, Ash C, Aguirre M, Farrow JAE, Martinez-Murica A, Phillips BA, Williams AM, Wallbanks S (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16 S rRNA. FEMS Microbiol Lett 77:5–12CrossRefGoogle Scholar
  14. Collins MD, Samelis J, Metaxopoulos J, Wallbanks S (1993) Taxonomic studies on some Leuconostoc-like organisms from fermented sausages — description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75:595–603PubMedGoogle Scholar
  15. Condon S (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol Rev 46:269–280CrossRefGoogle Scholar
  16. Costello PJ, Henschke PA (2002) Mousy off-flavor of wine: precursors and biosynthesis of the causative n-heterocycles 2-ethyltetrahydropyridine, 2-acetyltetrahydropyridine, and 2-acetyl-1-pyrroline by Lactobacillus hilgardii DSM 20176. J Agric Food Chem 50:7079–7087PubMedCrossRefGoogle Scholar
  17. Coton E, Rollan G, Bertrand A, Lonvaud-Funel A (1998) Histamine-producing lactic acid bacteria in wines: early detection, frequency, and distribution. Am J Enol Viticult 49:199–204Google Scholar
  18. Coucheney F, Gal L, Beney L, Lherminier Gervais JP, Guzzo J (2005) A small HSP, Lo18, interacts with the cell membrane and modulates lipid physical state under heat shock conditions in a lactic acid bacterium. Biochim Biophys Acta Biomembr 1720:92–98CrossRefGoogle Scholar
  19. Crowel EA, Guymon MF (1975) Wine constituents arising from sorbic acid addition, and identification of 2-ethoxyhexa-3,5-diene as source of geranium-like off-odor. Am J Enol Viticult 26:97–102Google Scholar
  20. Dellaglio F, Felis G (2005) Taxonomy of lactobacilli and bifidobacteria. In: Tannock GW (ed.) Probiotics & prebiotics: Scientific aspects. Caister Academic Press, WymondhamGoogle Scholar
  21. Dellaglio F, Dicks LMT, Torriani S (1995) The genus Leuconostoc. In: Wood B J B, Holzapfel W H (eds.) The genera of lactic acid bacteria. Blackie, London, pp 235–278Google Scholar
  22. De Vuyst L, Vandamme EJ (1994) Bacteriocins of lactic acid bacteria: Microbiology, genetics and applications. Blackie, LondonGoogle Scholar
  23. Dicks LMT, Dellaglio F, Collins MD (1995). Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 45:395–397PubMedGoogle Scholar
  24. DSMZ (2008) Bacterial nomenclature up to date (http://www.dsmz.de/microorganisms/ bacterial_nomenclature)
  25. Dittrich HH, Groýmann M (2005) Mikrobiologie des Weines. Ulmer, StuttgartGoogle Scholar
  26. Dueñas M, Munduate A, Perea A, Irastorza A (2003) Exopolysaccharide production by Pediococcus damnosus 2.6 in a semidefined medium under different growth conditions. Int J Food Microbiol 87:113–120PubMedCrossRefGoogle Scholar
  27. Eltz RW, Vandemark PJ (1960) Fructose dissimilation by Lactobacillus brevis. J Bacteriol 79:763–776PubMedGoogle Scholar
  28. Endo A, Okada S (2006) Oenococcus kitaharae sp. nov., a non-acidophilic and non-malolactic — fermenting oenococcus isolated from a composting distilled shochu residue. Int J System Evol Microbiol 56:2345–2348CrossRefGoogle Scholar
  29. Engesser DM, Hammes WP (1994) Non-heme catalase activity of lactic acid bacteria. Syst Appl Microbiol 17:11–19Google Scholar
  30. Ferrero M, Cesena C, Morelli L, Scolari G, Vescovo M (1996) Molecular characterization of Lactobacillus casei strains. FEMS Microbiol Lett 140:215–219CrossRefGoogle Scholar
  31. Fleet G H (1993) (ed.) Wine microbiology and biotechnology. Harwood Academic, ChurGoogle Scholar
  32. Fröhlich J (2002) Fluorescence in situ hybridization (FISH) and single cell micro-manipulation as novel applications for identification and isolation of new Oenococcus strains. Yeast-Bacteria Interactions 33–37. Lallemand, LangenloisGoogle Scholar
  33. Fröhlich J, König H (2004) Gensonden zum Nachweis von Species der Gattung Oenococcus. Patent DE 102 04 858 C2Google Scholar
  34. Fugelsang KC, Edwards CG (2007) Wine microbiology. Practical applications and procedures. Springer, HeidelbergGoogle Scholar
  35. Garrity GM (ed.) (2005) Bergey's manual of systematic bacteriology, 2nd ed., vol. 2. The proteo-bacteria. Part A. Introductory essays. Appendix 2: Taxonomic outline of Archaea and Bacteria. Springer, Heidelberg, pp. 207–220.Google Scholar
  36. Garvie EI (1960) The genus Leuconostoc and its nomenclature. J Dairy Res 27:283–292CrossRefGoogle Scholar
  37. Garvie EI (1986a) Leuconostoc. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds.) Bergey's manual of systematic bacteriology, vol. 2. Williams & Wilkins, London, pp 1071–1075Google Scholar
  38. Garvie EI (1986b) Pediococcus. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds.) Bergey's manual of systematic bacteriology, vol. 2. Williams & Wilkins, London, pp 1075–1079Google Scholar
  39. Hammes WP, Vogel RF (1995) The genus Lactobacillus. In Wood BJB, Holzapfel WH (eds.) The genera of lactic acid bacteria. Blackie Academic & Professional, London, pp 19–54Google Scholar
  40. Hammes W, Hertel C (2003) The genera Lactobacillus and Carnobacterium. In Dworkin M (ed.) The prokaryotes. Springer Verlag, Heidelberg, pp 320–403 (URL: http://link.springer.de/link/service/books)Google Scholar
  41. Hammes WP, Weis N, Holzapfel WP (1991) The genera Lactobacillus and Carnobacterium. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds.) The prokaryotes, 2nd ed. Springer, New York, pp 1535–1594Google Scholar
  42. Heresztyn T (1986) Formation of substituted tetrahydropyridines by species of Brettanomyces and Lactobacillus isolated from mousy wines. Am J Enol Viticult 37:127–132Google Scholar
  43. Holzapfel WH, Wood BJB (eds.) (1998) The genera of lactic acid bacteria, 1st ed. Blackie Academic & Professional, LondonGoogle Scholar
  44. Holzapfel W, Franz C, Ludwig W, Back W, Dicks L (2003) The genera Pediococcus and Tetragenococcus. In Dworkin M (ed.) The prokaryotes. Springer Verlag, Heidelberg, pp 229–266 (URL: http://link.springer.de/link/service/books)Google Scholar
  45. Josephsen J, Neve H (2004) Bacteriophage and antiphage mechanisms of lactic acid bacteria. In: Salminen S, von Wright A, Ouwehand AC (eds.) Lactic acid bacteria. Microbiological and functional aspects, 3rd ed. Marcel Dekker, New York, pp 295–350Google Scholar
  46. Kelly WJ, Huang CM, Asmundson RV (1993) Comparison of Leuconostoc oenos strains by pulsed-field gel electrophoresis. Appl Environ Microbiol 59:3969–3972PubMedGoogle Scholar
  47. Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49:209–224PubMedCrossRefGoogle Scholar
  48. Kandler O, Weiss N (1986) Lactobacillus. In Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds.) Bergey's manual of systematic bacteriology, vol. 2. Williams & Wilkins, London, pp 1209–1034Google Scholar
  49. Landete JM, Ferrer S, Pardo I (2005) Which lactic acid bacteria are responsible for histamine production in wine? J Appl Microbiol 99:580–586PubMedCrossRefGoogle Scholar
  50. Lafon-Lafourcade S, Carre E, Ribéreau-Gayon P (1983) Occurrence of lactic-acid bacteria during the different stages of vinification and conservation of wines. Appl Environ Microbiol 46:874–880PubMedGoogle Scholar
  51. Larisika M, Claus H, König H (2008) Pulsed-field gel electrophoresis for the discrimination of Oenococcus oeni isolates from different wine-growing regions in Germany. Int J Food Microbiol 123:171–176PubMedCrossRefGoogle Scholar
  52. Lehtonen P (1996) Determination of amines and amino acids in wine — a review. Am J Enol Vitic 47:127–133Google Scholar
  53. Llaubères RM, Richard B, Lonvaud-Funel A, Dubourdieu D (1990) Structure of an exocellular beta-D-glucan from Pediococcus sp, a wine lactic bacteria, Carbohydr Res 203:103–107PubMedCrossRefGoogle Scholar
  54. Lonvaud-Funel A, Joyeux A, Desens C (1988) Inhibition of malolactic fermentation of wines by products of yeast metabolism. J Sci Food Agric 44:183–191CrossRefGoogle Scholar
  55. Lonvaud-Funel A, Joyeux A, Ledoux O (1991) Specific enumeration of lactic-acid bacteria in fermenting grape must and wine by colony hybridization with nonisotopic DNA probes. J Appl Bacteriol 71:501–508Google Scholar
  56. Marcobal AM, Sela DA, Wolf YI, Makarova KS, Mills DA (2008) Role of hypermutability in the evolution of the genus Oenococcus. J Bacteriol 190:564–570PubMedCrossRefGoogle Scholar
  57. Mangani S, Guerrini S, Granchi L, Vincenzini M (2005) Putrescine accumulation in wine: role of Oenococcus oeni. Curr Microbiol 51:6–10PubMedCrossRefGoogle Scholar
  58. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O'Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A. 103:15611–15616PubMedCrossRefGoogle Scholar
  59. Mäyrä-Mäkinen A, Bigret M (2004) Industrial use and production of lactic acid bacteria. In: Salminen S, von Wright A, Ouwehand AC (eds.) Lactic acid bacteria: Microbiological and functional aspects, 3rd ed. Marcel Dekker, New York, pp 175–198Google Scholar
  60. Martinez-Murcia AJ, Collins MD (1990) A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing or 16S rRNA. FEMS Microbiol Lett 70:73–84CrossRefGoogle Scholar
  61. Morelli L, Vogensen FK, von Wright A (2004) Genetics of lactic acid bacteria. In: Salminen S, von Wright A, Ouwehand AC (eds.) Lactic acid bacteria: Microbiological and functional aspects, 3rd ed. Marcel Dekker, New York, pp 249–293Google Scholar
  62. Morse R, Collins MD, O'Hanlon K, Wallbanks S, Richardson PT (1996) Analysis of the beta' subunit of DNA-dependent RNA polymerase does not support the hypothesis inferred from 16S rRNA analysis that Oenococcus oeni (formerly Leuconostoc oenos) is a tachytelic (fast-evolving) bacterium. Int J System Bacteriol 46:1004–1009CrossRefGoogle Scholar
  63. Murphy MG, O'Connor L, Walsh D, Condon S (1985) Oxygen dependent lactate utilization by Lactobacillus plantarum. Arch Microbiol 141:75–79PubMedCrossRefGoogle Scholar
  64. Nakayama J, Sonomoto K (2002) Cell-to-cell communication in lactic acid bacteria. J Japan Soc Biosci Biotechnol Agrochem 76:837–839Google Scholar
  65. Orla-Jensen S (1919) The lactic acid bacteria. Fred Host and Son, CopenhagenGoogle Scholar
  66. Palacios A, Suárez C, Krieger S, Didier T, Otaño L, Peña F (2004) Perception by wine drinkers of sensory defects caused by uncontrolled malolactic fermentation. Proc. XVI es Entretiens Scientifiques Lallemand, Porto, pp 45–52Google Scholar
  67. Pfannebecker J, Fröhlich J (2008) Use of a species-specific multiplex PCR for the identification of pediococci. Int J Food Microbiol. In Press.Google Scholar
  68. Poblet-Icart M, Bordons A, Lonvaud-Funel A (1998) Lysogeny of Oenococcus oeni (syn. Leuconostoc oenos) and study of their induced bacteriophages. Curr Microbiol 36:365–369PubMedCrossRefGoogle Scholar
  69. Poolman B, Molenaar D, Smid EJ, Ubbink T, Abee T, Renault PP, Konings WN (1991) Malolactic fermentation — electrogenic malate uptake and malate lactate antiport generate metabolic energy. J Bacteriol 173:6030–6037PubMedGoogle Scholar
  70. Pot B, Ludwig W, Kersters K, Schleifer KH, (1994) Taxonomy of lactic acid bacteria. In: De Vuyst L, Vandamme EJ (eds.) Bacteriocins of lactic acid bacteria: Genetic and applications. Chapman and Hall, GlasgowGoogle Scholar
  71. Radler F, (1975) The metabolism of organic acids by lactic acid bacteria. In: Carr JG, Cutting CV, Whiting GC (eds.) Lactic acid bacteria in beverages and food. Academic Press, London, pp 17–27Google Scholar
  72. Radler F, Yannissis C (1972) Decomposition of tartrate by lactobacilli. Arch Microbiol 82:219–239Google Scholar
  73. Raibaud P, Galpin HV, Ducluzeau R, Mocquot G, Oliver G (1973) La genre Lactobacillus dans le tube digestif du rat. I. Charactère des souches homofermentaires isolèes de rats holo- et gnoto-xeniques. Ann de l'Institut Pasteur 124A:83–109Google Scholar
  74. Rammelberg M, Radler F (1990) Antibacterial polypeptides of Lactobacillus species. J Appl Bacteriol 69:177–184Google Scholar
  75. Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2006a) Handbook of enology, 2nd ed., vol. 1, The microbiology of wine and vinifications. John Wiley, ChichesterGoogle Scholar
  76. Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006b) Handbook of Enology. Vol. 2, 2nd ed. The chemistry of wine stabilization and treatment. Vol.1, 2nd ed. John Wiley, ChichesterGoogle Scholar
  77. Richter H, Vlad D, Unden G (2001) Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production. Arch Microbiol 175:26–31PubMedCrossRefGoogle Scholar
  78. Rodas AM, Chenoll E, Macián MC, Ferrer S, Pardo I, Aznar R (2006) Lactobacillus vini sp. nov., a wine lactic acid bacterium homofermentative for pentoses. I J System Evol Microbiol 56:513–517CrossRefGoogle Scholar
  79. Salminen S, von Wright A, Ouwehand A C (eds.) (2004) Lactic acid bacteria: Microbiological and functional aspects, 3rd ed. Marcel Dekker, New YorkGoogle Scholar
  80. Satokari R, Mattila-Sandholm T, Suihko ML (2000) Identification of pediococci by ribotyping. J Appl Microbiol 88:260–265PubMedCrossRefGoogle Scholar
  81. Schlegel HG (1999) Geschichte der Mikrobiologie. Acta Historica Leopoldina, HalleGoogle Scholar
  82. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bact Rev 36:407–477PubMedGoogle Scholar
  83. Schleifer KH, Ludwig W (1995a) Phylogenetic relationship of lactic acid bacteria. In: Wood BJB, Holzapfel WH (eds.) The genera of lactic acid bacteria. Blackie Academic & Professional, London, pp 7–18Google Scholar
  84. Schleifer KH, Ludwig W (1995b) Phylogeny of the genus Lactobacillus and related genera. System Appl Microbiol 18:461–467Google Scholar
  85. Schütz H, Radler F (1984a) Propanediol-1,2-dehydratase and metabolism of glycerol of Lactobacillus brevis. Arch Microbiol 139:366–370CrossRefGoogle Scholar
  86. Schütz H, Radler F (1984b) Anaerobic reduction of glycerol to propanediol-1.3 by L. brevis and L. buchneri. Syst Appl Microbiol 5:169–178Google Scholar
  87. Sedewitz B, Schleifer KH, Götz F (1984) Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum. J Bacteriol 160:462–465PubMedGoogle Scholar
  88. Simpson WJ, Tachuchi H, (1995) The genus Pediococcus, with notes on the genera Tetratogenococcus and Aerococcus. In: Wood BJB, Holzapfel WH (eds.) The genera of lactic acid bacteria. Blackie Academic & Professional, London, pp 125–172Google Scholar
  89. Smiley MB, Fryder V (1978) Plasmids, lactic acid production, and N-acetyl-D-glucosamine fermentation in Lactobacillus helveticus subsp. jugurti. Appl Environ Microbiol 35:777–781Google Scholar
  90. Sozzi T, Poulain JM, Maret R (1978) Etude d'un bactériophage de Leuconostoc mesenteroides isolé de protuits laitiers, Schweiz. Milchwirtsch Forsch 7:33–40Google Scholar
  91. Sozzi T, Watanabe K, Stetter K, Smiley M (1981). Bacteriophages of the genus Lactobacillus. Intervirology 16:129–135PubMedCrossRefGoogle Scholar
  92. Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29PubMedCrossRefGoogle Scholar
  93. Tagg JR, Dajana AS, Wannamaker LW (1976) Bacteriocins of Gram-positive bacteria. Bacteriol Rev 40:722–756PubMedGoogle Scholar
  94. Tannock G (ed.) (2005) Probiotics and prebiotics: Scientific aspects, 1st ed. Caister Academic, WymondhamGoogle Scholar
  95. Theobald S, Pfeiffer P, König H (2005) Manganese-dependent growth of oenococci. J Wine Res 16:171–178CrossRefGoogle Scholar
  96. Theobald S, Pfeiffer P, Zuber U, König H (2007a) Influence of epigallocatechin gallate and phenolic compounds from green tea on the growth of Oenococcus oeni. J Appl Microbiol 104:566–572Google Scholar
  97. Theobald S, Pfeiffer P, Paululat T, Gerlitz M, König H (2007b) Neue Hinweise für synergistische Wachstumsfaktoren zur erfolgreichen Kultivierung des weinrelevanten Bakterium Oenococcus oeni. Lebensmittel-Rundschau 103:411–416Google Scholar
  98. Uthurry CA, Suárez Lepe JA, Lombardero J, Garcia del Hierro JRJ (2006) Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chem 94:262–270Google Scholar
  99. Viti C, Giovannetti L, Granchi L, Ventura S (1996) Species attribution and strain typing of Oenococcus oeni (formerly Leuconostoc oenos) with restriction endonuclease fingerprints. Res Microbiol 147:651–660PubMedCrossRefGoogle Scholar
  100. Wibowo D, Eschenbruch R, Davis CR, Fleet GH, Lee TH (1985) Occurence and growth of lactic acid bacteria in wine. A review. Am J Enol Viticult 36:302–313Google Scholar
  101. Wood BJB (ed.) (1999) Lactic acid bacteria in health and disease. Kluwer Academic, New YorkGoogle Scholar
  102. Wood, BJB, Holzapfel, WH (eds.) (1995) The genera of lactic acid bacteria. Blackie Academic & Professional, LondonGoogle Scholar
  103. Wood BJB, Warner PJ (2003) Genetics of lactic acid bacteria. Kluwer Academic, New YorkGoogle Scholar
  104. Yang D, Woese CR (1989) Phylogenetic structure of the “Leuconostocs”: an interesting case of rapidly evolving organisms. System Appl Microbiol 12:145–149Google Scholar
  105. Yokokura T, Kodaira S, Ishiwa H, Sakurai T (1974) Lysogeny in lactobacilli. J Gen Microbiol 84:277–284PubMedGoogle Scholar
  106. Zavaleta AI, Martínez-Murcia AJ, Rodríguez-Valera F (1997) Intraspecific genetic diversity of Oenococcus oeni as derived from DNA fingerprinting and sequence analyses. Appl Environ Microbiol 63:1261–1267PubMedGoogle Scholar
  107. Ze-Ze L, Tenreiro O, Paveia H (2000) The Oenococcus oeni genome: physical and genetic mapping of strain GM and comparison with the genome of a ‘divergent’ strain, PSU-1. Microbiology 146:3195–3204PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Helmut König
    • 1
  • Jürgen Fröhlich
    • 2
  1. 1.Institute of Microbiology and Wine ResearchJohannes Gutenberg-UniversityMainzGermany
  2. 2.Erbslöh Geisenheim AG, Erbslöhstraße 1GeisenheimGermany

Personalised recommendations