Skip to main content

Synthesis and Characterization

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 763))

Abstract

As compared to bulk materials, magnetic nanoparticles possess distinct magnetic properties and attempts have been made to exploit their beneficial properties for technical and biomedical applications, e.g. for magnetic fluids, high-density magnetic recording, or biomedical diagnosis and therapy. Early magnetic fluids (MFs) were produced by grinding magnetite with heptane or long chain hydrocarbon and a grinding agent, e.g. oleic acid [152]. Later procedures for MFs precipitated Fe 3+/Fe 2+ of an aqueous solution with a base, coated the particles by oleic acid, and dispersed them in carrier liquid [161]. However, besides the elemental composition and crystal structure of the applied magnetic particles, particle size and particle size distribution determine the properties of the resulting MF. Many methods for nanoparticle synthesis including the preparation of metallic magnetic particles have been described in the literature. However, there still remain important questions, e.g. concerning control of particle size, shape, and monodispersity as well as their stability towards oxidation. Moreover, peptization by suitable surfactants or polymers into stable MFs is an important issue since each application in engineering or biomedicine needs special MFs with properties adjusted to the requirements of the system.

In this chapter we address the different pathways for nanoparticle synthesis and preparation of MFs. First, characterization methods will be introduced which are discussed more in detail together with nanoparticle synthesis and preparation of MFs.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, M., Janke, V., Sievers, S., Siegner, U., Schüler, D., Heyen, U.: Scanning force microscopy study of biogenic nanoparticles for medical applications. J. Magn. Magn. Mater. 290–291, 269–271(2005)

    Article  ADS  Google Scholar 

  2. An, S.Y., Lee, S.W., Kim, C.S.: Magnetic properties of Ba1-xSrxFe12O19 grown by a sol-gel method. J. Magn. Magn. Mater. 242, 413–415 (2002)

    Article  ADS  Google Scholar 

  3. Andrä, W.: Magnetic hyperthermia. In: Andrä, W., Nowak, H. (eds.) Magnetism in Medicine, pp. 455–470. Wiley, Berlin (1998)

    Google Scholar 

  4. Ankudinov, A.L., Rehr, J.J., Low, J., Bare, S.: Effect of hydrogen adsorption on X-ray absorption spectra of small Pt clusters. Phys. Rev. Lett. 86, 1642–1645 (2001)

    Article  ADS  Google Scholar 

  5. Autenrieth, T., Wagner, J., Hempelmann, R., Härtl, W., Robert, A., Grübel, G.: Cobalt ferrite silica core/shell particles: A magnetic Yukawa system. Appl Organomet. Chem. 18: 520–522 (2004)

    Article  Google Scholar 

  6. Baker, S.H., Roy, M., Louch, S., Binns, C.: Atomic structure in magnetic cluster assembled Fe/Co films as determined from extended absorption fine structure, J. Phys: Condens. Matter 18, 2385–2399 (2006)

    ADS  Google Scholar 

  7. Bazylinski, D.A., Frankel, R.B.: Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2, 217–230 (2004)

    Article  Google Scholar 

  8. Bechthold, N., Tiarks, F., Willert, M., Landfester, K., Antonietti, M.: Miniemulsion polymerization: Applications and new materials. Macromol. Symp. 151,549–555 (2000)

    Article  Google Scholar 

  9. Becker, J.A., Schäfer, R., Festag, R., Ruland, W., Wendorff, J.H., Pebler, J., Quaiser, S.A., Helbig, W., Reetz, M.T.: Electrochemical growth of superparamagnetic cobalt clusters. J. Chem. Phys. 103, 2520–2527 (1995)

    Article  ADS  Google Scholar 

  10. Behrens, S., Bönnemann, H., Matoussevitch, N., Dinjus, E., Modrow, H., Palina, N., Frerichs, M., Kempter, V., Maus-Friedrichs, W., Heinemann, A., Kammel, M., Wiedenmann, A., Pop, L., Odenbach, S., Uhlmann, E., Bayat, N., Hesselbach, J., Guldbakke, J.M.: Air-stable Co-, Fe- and Fe/Co-nanoparticles and ferrofluids Z. Phys. Chem. 220, 3–40 (2006)

    Google Scholar 

  11. Bergemann, C., Müller-Schulte, D., Oster, J., Brassard, L.A., Lübbe, A.S.: Magnetic ion-exchange nano- and microparticles for medical, biochemical and molecular biological applications. J Magn. Magn. Mater 194, 45–52 (1999)

    Article  ADS  Google Scholar 

  12. Berne, B.J., Pecora, R.: Dynamic Light Scattering. Wiley, New York Blakemore RP (1976)

    Google Scholar 

  13. Frankel, R.B.: Magnetic navigation in bacteria. Sci. Am. 245, 42–49 (1981)

    Google Scholar 

  14. Bönnemann, H., Brand, R.A., Brijoux, W., Hofstadt, H.W., Frerichs, M., Kempter, V., Maus-Friedrichs, W., Matoussevitch, N., Nagabhushana, K.S., Voigts, F., Caps, V.: Air stable Fe and Fe-Co magnetic fluids – synthesis and characterization. Appl. Organomet. Chem. 19, 790–796 (2005)

    Article  Google Scholar 

  15. Bönnemann, H., Brand, R.A., Brijoux, W., Brinkmann, R., Hofstadt, H.W., Matoussevitch, N., Waβmuth, B.: Kolloidale magnetische Flüssigkeiten: Grundlagen, Entwicklung und Anwendung neuartiger Ferrofluide. Abstract, Benediktbeuren, Germany (2004)

    Google Scholar 

  16. Bönnemann, H., Brijoux, W., Brinkmann, R., Matoussevitch, N., Waldöfner, N., Palina, N., Modrow, H.: A size-selective synthesis of air stable colloidal magnetic cobalt nanoparticles. Inorg. Chim. Acta. 350, 617–624 (2003)

    Article  Google Scholar 

  17. Bönnemann, H., Brijoux, W., Brinkmann, R., Matoussevitch, N., Waldörfner, N.: DE 10 227 779.6 to Studiengesellschaft Kohle mbH (2002)

    Google Scholar 

  18. Braunbek, W.: Die Erzeugung weitgehend homogener Magnetfelder durch Kreisströme. Zeitschrift für Physik 88,399–402 (1934)

    Article  ADS  Google Scholar 

  19. Bremer, L.G.B., Deriemaeker, L., Finsy, R., Gelade, E., Joosten, J.G.H.: Fiber Optic Dynamic Light Scattering, neither Homodyne nor Heterodyne. Langmuir 9, 2008–2014 (1993)

    Article  Google Scholar 

  20. Brown, W.F.: Relaxation behaviour of fine magnetic particles. J. Appl. Phys. 30, 130 (1959)

    Article  ADS  Google Scholar 

  21. Brown, W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130(5), 1677–1686 (1963)

    Article  ADS  Google Scholar 

  22. Bucher, S., Hormes, J., Modrow, H., Brinkmann, R., Waldöfner, N., Bönnemann, H., Beuermann, L., Krischok, S., Maus-Friedrichs, W., Kempter, V.: Interaction between core and protection shell of N(butyl)4Cl and N(octyl)4Cl-stabilized Pd colloids. Surf. Sci. 497, 321–332 (2002)

    Article  ADS  Google Scholar 

  23. Butter, K., Wiedenmann, A., Hoell, A., Petukhov, A., Vroege, G.J.: J. Appl. Cryst. 37, 847–856 (2004)

    Article  Google Scholar 

  24. Butter, K., Bomans, P., Frederik, P., Vroege, G., Philipse, A.: Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat. Mater. 2, 88–91 (2003)

    Article  ADS  Google Scholar 

  25. Butter, K., Philipse, A.P., Vroege, G.J.: Synthesis and properties of iron ferrofluids. J. Magn. Magn. Mater. 252, 1–3 (2002)

    Article  ADS  Google Scholar 

  26. Carey, R., Isaac, D.: The magnetic structure of cobalt ferrtite. Proc. Phys. Soc. 81, 741–744 (1963)

    Article  ADS  Google Scholar 

  27. Chandrasekhar, S.: Liquid Crystals. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  28. Chantrell, R.W., Popplewell, J., Charles. S.W.: Measurements of particle size distribution parameters in ferrofluids. IEEE Trans.Magn. MAG-14 975–977 (1978)

    Article  ADS  Google Scholar 

  29. Charmot, D., Vidil, C.: U.S. Patent No. 5356713 (1994)

    Google Scholar 

  30. Chen, M., Nikles, D.E.: Synthesis of spherical FePd and CoPt nanoparticles. J. Appl. Phys. 91, 8477–8479 (2002)

    Article  ADS  Google Scholar 

  31. Chen, M., Nikles, D.E.: Synthesis, self-assembly, and magnetic properties of FexCoyPt100-x-y nanoparticles. Nano. Lett. 2, 211–214 (2002)

    Article  ADS  Google Scholar 

  32. Chen, H.S., Miller, C.E.: A rapid quenching technique for the preparation of thin uniform films of amorphous solids. Rev. Sci. Instrum. 41, 1237–1238 v (1970)

    Article  ADS  Google Scholar 

  33. Cornell, R.M., Schwertmann, U.: The iron oxides (Structure, properties, reactions, occurrences and uses), 2nd edn. Wiley-VCH, Weinheim (2003)

    Book  Google Scholar 

  34. Daniel, J.C., Schuppiser, J.L., Tricot, M.: U.S. Patent No. 4358388 (1982)

    Google Scholar 

  35. de Gennes, P.G.: The Physics of Liquid Crystals. Clarendon Press, Oxford (1997)

    Google Scholar 

  36. Devouard, B., Posfai, M., Hua, X., Bazylinski, D.A., Frankel, R.B., Buseck, P.R.: Magnetite from magnetotactic bacteria: Size distributions and twinning. Am. Mineral 83, 1387–1398 (1998)

    Article  ADS  Google Scholar 

  37. Dieckhoff, S., Schlett, V., Possart, W., Hennemann, O.D., Günster, J., Kempter, V.: Characterization of triazine derivatives on silicon wafers studied by photoelectron spectroscopy (XPS, UPS) and metastable impact electron spectroscopy (MIES). Appl. Surf. Sci. 103, 221–229 (1996)

    Article  ADS  Google Scholar 

  38. Dinega, D., Bawendi, M.G.: A solution-phase chemical approach to a new crystal structure of cobalt. Angew Chem Int Ed 38, 1788–1791 (1999)

    Article  Google Scholar 

  39. Dresco, P.A., Zaitsev, V.S., Gambino, R.J., Chu, B.: Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir 15, 1945–1951 (1999)

    Article  Google Scholar 

  40. Dumazet-Bonnamour, I., Le Perchec, P.: Colloidal dispersion of magnetite nanoparticles via in situ preparation with sodium polyoxyalkylene diphosphonates. Colloid Surface A 173, 61–71 (2000)

    Article  Google Scholar 

  41. Dumestre, F., Martinez, S., Zitoun, D., Fromen, M.C., Casanove, M.C., Lecante, P., Respaud, M., Serres, A., Benfield, R.E., Amiens, C., Chaudret, B.: Magnetic nanoparticles through organometallic synthesis: evolution of the magnetic properties from isolated nanoparticles to organised nanostructures. Faraday Discuss. 125, 265–278 (2004)

    Article  ADS  Google Scholar 

  42. Dunin-Borkowski, R.E., McCartney, M.R., Posfai, M., Frankel, R.B., Bazylinski, D.A., Buseck, P.R.: Off-axis electron holography of magnetotactic bacteria: Magnetic microstructure of strains MV-1 and MS-1. Eur. J. Mineral. 13, 671–684 (2001)

    Article  ADS  Google Scholar 

  43. Dutz, S., Hergt, R., Mürbe, J., Müller, R., Zeisberger, M., Andrä, W., Töpfer, J., Bellemann, M.E.: Hysteresis losses of magnetic nanoparticle powders in the single domain range. J. Magn. Magn. Mater. 308, 305–312 (2007)

    Article  ADS  Google Scholar 

  44. Eberbeck, D.: Glass like magnetic alternating field susceptibility behavior of structurally frozen ferrofluids. Eur. Phys. J. B 10, 237–245 (1999)

    Article  ADS  Google Scholar 

  45. Eberbeck, D., Janke, V., Hartwig, S., Heyen, U., Schüler, D., Albrecht, M., Trahms, L.: Blocking of magnetic moments of magnetosomes measured by magnetorelaxometry and direct observation by magnetic force microscopy. J. Magn. Magn. Mat. 289, 70–73 (2005)

    Article  ADS  Google Scholar 

  46. Eberbeck, D., Bergemann, C., Wiekhorst, F., Glöckl, G.: Quantification of aggregates of magnetic nanoparticles in different suspension media by magnetorelaxometry. Magnetohydrodynamics 41, 305–316 (2005)

    Article  ADS  Google Scholar 

  47. Eberbeck, D., Bergemann, C., Hartwig, S., Steinhoff, U., Trahms, L.: Appl. Organometal. Chem. 18, 542–547 (2004)

    Article  Google Scholar 

  48. Eberbeck, D., Hartwig, S., Steinhoff, U., Trahms, L.: Description of the magnetisation decay in ferrofluids with a narrow particle size distribution. Magnetohydrodynamics 39, 77–83 (2003)

    Article  ADS  Google Scholar 

  49. Elias, H.G.: Makromoleküle Band 2: Physikalische Strukturen und Eigenschaften. Wiley-VCH, Weinheim (2001)

    Book  Google Scholar 

  50. Fischer, B., Wagner, J., Schmitt, M., Trieu, V., Hempelmann, R.: Dependence of Brownian Relaxation on the Volume Fraction and an External Field. Z. Phys. Chem. 220, 69–77 (2006)

    Article  Google Scholar 

  51. Fischer, B., Wagner, J., Schmitt, M., Hempelmann, R.: Tuning the relaxation behaviour by changing the content of cobalt in Cox Fe3-x O4 ferrofluids. J. Phys. Condens. Matter 17, 7875–7883 (2005)

    Article  ADS  Google Scholar 

  52. Flies, C., Peplies, J., Schüler, D.: A combined approach for the characterization of uncultivated magnetotactic bacteria from various aquatic environments. Appl. Environ. Microbiol. 71, 2723–2731 (2005)

    Article  ADS  Google Scholar 

  53. Frerichs, M., Schweiger, F.X., Voigts, F., Rudenkiy, S., Maus-Friedrichs, M., Kempter, V.: Interaction of O2, CO and CO2 with Co films. Surf. Interf. Anal. 37, 633–640 (2005)

    Article  Google Scholar 

  54. Frommen, C., Rösner, H.: Observation of long-period superstructures in chemically synthesised CoPt nanoparticles. Mater. Lett. 58, 123–127 (2003)

    Article  Google Scholar 

  55. Gelbrich, T., Feyen, M., Schmidt, A.M.: Magnetic polymer brushes: Towards tailor-made stabilization of magnetic fluids by surface-initiated polymerization. Z. Phys. Chem. 220, 41–49 (2006)

    Article  Google Scholar 

  56. Gelbrich, T., Feyen, M., Schmidt, A.M.: Magnetic thermoresponsive core-shell nanoparticles. Macromolecules accepted (2006)

    Google Scholar 

  57. Giersig, M., Hilgendorff, M.: The preparation of ordered colloidal magnetic particles by magnetophoretic deposition. J. Phys. D: Appl. Phys. 32, L111–L113 (1999)

    Article  ADS  Google Scholar 

  58. Goetze, T., Gansau, C., Buske, N., Roeder, M., Görnert, P., Bahr, M.: Biocompatible magnetic core/shell nanoparticles. J. Magn. Magn. Mater. 252, 399–402 (2002)

    Article  ADS  Google Scholar 

  59. Görnert, P., Sinn, E., Rösler, M.: Preparation and characterization of hexaferrite powders. Key Eng. Mater 58, 129–148 (1991)

    Article  Google Scholar 

  60. Gorby, Y.A., Beveridge, T.J., Blakemore, R.P.: Characterization of the bacterial magnetosome membrane. J. Bacteriol. 170, 834–841 (1988)

    Article  Google Scholar 

  61. Grossman, H.L., Myers, W.R., Vreeland, V.L., Bruehl, R., Alper, M.D., Bertozzi, C.R., Clarke, J.: Detection of bacteria in suspension by using a superconducting quantum interference device. PNAS 101, 129–134 (2004)

    Article  ADS  Google Scholar 

  62. Grünberg, K., Müller, E.C., Otto, A., Reszka, R., Linder, D., Kube, M., Reinhardt, R., Schüler, D.: Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl. Eviron. Microbiol. 70, 1040–1050 (2004)

    Article  ADS  Google Scholar 

  63. Grünberg, K., Wawer, C., Tebo, B.M., Schüler, D.: A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 67, 4573–4582 (2001)

    Article  ADS  Google Scholar 

  64. Hamdeh, H.H., Hikal, W.M., Taher, S.M., Ho, J.C., Thuy, N.P., Quy, O.K., Hanh, N.: Mössbauer evalutation of cobalt ferrite nanoparticles synthesized by forceed hydrolysis. J. Appl. Phys. 97, 064310-1-4 (2005)

    Article  ADS  Google Scholar 

  65. Harada, Y., Masuda, S., Ozaki, H.: Electron spectroscopy using metastable atoms as probes for solid surfaces. Chem. Rev. 97: 1897–1952 (1997)

    Article  Google Scholar 

  66. Hartmann, C.: Herstellung und Charakterisierung von dotierten nanokristallinen Barium-hexaferritpartikeln im Übergangsgebiet von uniaxialer zu planarer Anisotropie. diploma thesis, FH Jena/IPHT Jena: 22–26 (2004)

    Google Scholar 

  67. Heinemann, A., Wiedenmann, A.: Benefits of polarized small-angle neutron scattering on magnetic nanometer scale structure modeling. J. Appl. Cryst. 36, 845–849 (2003)

    Article  Google Scholar 

  68. Heinemann, A., Hoell, A., Wiedenmann, A., Pop, L.P.: Small-angle scattering of orientated magnetic structures and applications to magnetic colloids. Physica B, accepted (2006)

    Google Scholar 

  69. Heinemann, A., Wiedenmann, A., Kammel, M., Bönnemann, H., Matoussevitch, N.: High-quality structure parameter for magnetic liquids obtained by small-angle scattering of polarized neutrons. Appl. Organometal. Chem. 18, 561–564 (2004)

    Article  Google Scholar 

  70. Hergt, R., Andrä, W.: Magnetic Hyperthermia and Thermoablation. In: Andrä, W., Nowak, H. (eds.) Magnetism in Medicine, 2nd edn. Wiley-VCH, Berlin, in press (2006)

    Google Scholar 

  71. Hergt, R., Andrä, W., d’Ambly, C.G., Hilger, I., Kaiser, W.A., Richter, U., Schmidt, H.G.: Physical limits of hyperthermia using magnetite fine particles, IEEE Trans. Magn. 34(5), 3745–3754 (1998)

    Article  ADS  Google Scholar 

  72. Hergt, R., Hiergeist, R., Zeisberger, M., Schüler, D., Heyen, U., Hilger, I., Kaiser, W.A.: Magnetic properties of bacterial magnetosomes as diagnostic and therapeutic tools. J. Magn. Magn. Mater. 293, 80–86 (2005)

    Article  ADS  Google Scholar 

  73. Hergt, R., Hiergeist, R., Hilger, I., Kaiser, W.A., Lapatnikov, Y., Margel, S., Richter, U.: Maghemite nanoparticles with very high AC-losses for application in RFmagnetic hyperthermia. J. Magn. Magn. Mater. 270, 345–357 (2004)

    Article  ADS  Google Scholar 

  74. Hergt, R., Hiergeist, R., Zeisberger, M., Glöckl, G., Weitschies, W., Ramirez, L.P., Hilger, I., Kaiser, W.A.: Enhancement of AC-losses of magnetic nanoparticles for heating applications. J. Magn. Magn. Mater. 280, 358–368 (2004)

    Article  ADS  Google Scholar 

  75. Hergt, R., Hiergeist, R., Hilger, I., Kaiser, W.A.: Magnetic nanoparticles for thermoablation. Recent Res. Devel. Mat. Sci. 3, 723–742 (2002)

    Google Scholar 

  76. Heyen, U., Schüler, D.: Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol. 61, 536–544 (2003)

    Article  Google Scholar 

  77. Hiergeist, R., Andrä, W., Buske, N., Hergt, R., Hilger, I., Richter, U., Kaiser, W.: Application of magnetite ferrofluids for hyperthermia. J. Magn. Magn. Mat. 201, 420–422 (1999)

    Article  ADS  Google Scholar 

  78. Hilger, I., Andrä, W., Hergt, R., Hiergeist, R., Schubert, H., Kaiser, W.A.: Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology 218(2001) 570–575 (2001)

    Article  Google Scholar 

  79. Hinds, W.C.: Aerosol Technology. Wiley-Interscience, Boston (1982)

    Google Scholar 

  80. Hinotsu, T., Jeyadevan, B., Chinnasamy, C.N., Shinoda, K., Tohji, K.: Size and structure of magnetic nanoparticles by using a modified polyol process. J. Appl. Phys. 95, 7477–7479 (2004)

    Article  ADS  Google Scholar 

  81. Hoell, A., Wiedenmann, A., Heyen, U., Schüler, D.: The non-magnetic surface of magnetic particles in nanostructured glass ceramics studied by SANS. Physica B 350, e309–e313 (2004)

    Article  Google Scholar 

  82. Hoell, A., Müller, R., Heinemann, A., Wiedenmann, A.: Structure investigations of barium-hexaferrite ferrofluids and its precursors by SANS with polarized neutrons. Magnetohydrodyn 39(1), 109–116 (2003)

    ADS  Google Scholar 

  83. Hoell, A., Kammel, M., Heinemann, A., Wiedenmann, A.: Solvent dependent arrangement of shell molecules in ferrofluids studied by small-angle scattering with polarized neutrons. J. Appl. Cryst. 36, 558–561 (2003)

    Article  Google Scholar 

  84. Hoell, A., Müller, R., Wiedenmann, A., Gawalek, W.: Core-shell and magnetic structure of barium hexaferrite fluids studied by SANS. J. Magn. Magn. Mater. 252, 92–93 (2002)

    Article  ADS  Google Scholar 

  85. Hoffmann, D., Landfester, K., Antonietti, M.: Encapsulation of magnetite in polymer particles via the miniemulsion polymerization process. Magnetohydrodynamics 37, 217–221 (2001)

    Article  ADS  Google Scholar 

  86. Holzapfel, V., Musyanovych, A., Landfester, K., Lorenz, M.R., Mailänder, V.: Preparation of fluorescent carboxyl and amino functionalized polystyrene particles by miniemulsion polymerization as markers for cells. Macromol. Chem. Phys. 206, 2440–2449 (2005)

    Article  Google Scholar 

  87. Hormes, J., Modrow, H., Bönnemann, H., Kumar, C.S.S.R.: The influence of various coatings on the electronic, magnetic, and geometric properties of cobalt nanoparticles. J. Appl. Phys. 97, 10R102 (2005)

    Article  Google Scholar 

  88. Hütten, A., Sudfeld, D., Ennen, I., Reiss, G., Wojczykowski, K., Jutzi, P.: Ferromagnetic (FeCo) nanoparticles for biotechnology. J. Magn. Mater. 293, 93–101 (2005)

    Article  ADS  Google Scholar 

  89. Ivanov, A.O., Kuznetsova, O.B.: Magnetic properties of dense ferrofluids. J. Magn. Magn. Mater. 252, 135–137 (2002)

    Article  ADS  Google Scholar 

  90. Iwasawa, Y. (ed.): X-ray Absorption Fine Structure for Catalysts and Surfaces. World Scientific, Singapore (1996)

    Google Scholar 

  91. Kammel, M., Wiedenmann, A., Heinemann, A., Bönnemann, H., Matoussevitch, N.: Oxide coating of Co-Ferrofluids studied by polarized SANS. Physica B385–386, 457–460 (2006)

    Google Scholar 

  92. Kantorovich, L., Shluger, A.L., Sushko, P.V., Günster, J., Stracke, P., Goodman, D.W., Kempter, V.: Mg clusters on MgO surfaces: study of the nucleation mechanism with MIES and ab initio calculations. Faraday Discussions. 114, 173–194 (1999)

    Article  ADS  Google Scholar 

  93. Kato, M.: Preparation of ultrafine particles of refractory oxides by gas evaporation method. J. Appl. Phys. 15, 757–760 (1976)

    Article  Google Scholar 

  94. Kelley, J.R.: U.S. Patent No. 4019994 (1977)

    Google Scholar 

  95. Khallafalla, S.E., Reimers, G.W.: Preparation of dilution-stable aqueous magnetic fluids. IEEE Trans. Magn. 16(2), 178–183 (1980)

    Article  ADS  Google Scholar 

  96. Kim, D.K., Zhang, Y., Voit, W., Rao, K.V., Kehr. J., Bjelke, B., Muhammed, M.: Superparamagnetic iron oxide nanoparticles for bio-medical applications. Scripta. Materialia. 44, 1713–1717 (2001)

    Article  Google Scholar 

  97. Kirusu, S., Ido, T., Yokoyama, H.: Surface effect on saturation magnetization of Co and Ti substituted Ba-ferrite fine particles. IEEE Trans. Magn. 23, 3137–3139 (1987)

    Article  ADS  Google Scholar 

  98. Klokkenburg, M., Vonk, C.H., Claesson, E.M., Meeldijk, J.D., Erné, B.H., Philipse, A.P.: Direct imaging of zero-field dipolar structures in colloidal dispersions of synthetic magnetite. J. Am. Chem. Soc. 126, 16706–16707 (2004)

    Article  Google Scholar 

  99. Klupsch, T.: Magnetization curve and magnetic characterization of a system of fine single domain particles with oblate ellispoidal shape and planar magnetocrystalline anisotropy. Phys. Stat. Sol. 113, 561–572 (1989)

    Article  ADS  Google Scholar 

  100. Kodama, R.H., Berkowitz, A.E.: Atomic-scale magnetic modelling of oxide nanoparticles. Phys. Rev. B 59, 6321–6336 (1999)

    Article  ADS  Google Scholar 

  101. Komeili, A., Vali, H., Beveridge, T.J., Newman, D.K.: Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc. Natl Acad. Sci. USA 101, 3839–3844 (2004)

    Article  ADS  Google Scholar 

  102. Kostorz, G.: Small Angle Scattering. In: Kostorz G (ed.) Treatease on Materials Science and Technology, pp. 227–290. Acad Press, New York (1979)

    Google Scholar 

  103. Keiderling, U., Wiedenmann, A.: Physica B 213, 214, 895–897 (1995)

    Article  ADS  Google Scholar 

  104. Keller, T., Krist, T., Danzig, A., Keiderling, U., Mezei, F., Wiedenmann, A.: The polarized neutron small-angle scattering instrument at BENSC Berlin. J Nuclear Instruments A451: 474–479 (2000)

    Article  ADS  Google Scholar 

  105. Kötitz, R., Fannin, P.C., Trahms, L.: Time domain study of Brownian an Néel relaxation in ferrofluids. J. Magn. Magn. Mat. 149, 42–46 (1995)

    Article  ADS  Google Scholar 

  106. Kötitz, R., Trahms, L., Koch, H., Weitschies, W.: In: Baumgartner, C., et al., (eds.) Biomagnetism: Fundamental research and clinical applications, pp. 785–788. Elsevier Science (1995)

    Google Scholar 

  107. Kohlbrecher, J., Wiedenmann, A., Wollenberger, H.: Magnetic coupling between differnt phases in nanocrystalline Fe-Si-B studied by SANS. Z Physik 104, 1–4 (1997)

    Article  ADS  Google Scholar 

  108. Kojima, H.: Fundamental properties of hexagonal ferrites with magnetoplumbite structure. In: Wohlfarth, E.P. (ed.) Ferromagnetic Materials, vol. 3, pp. 305–393. North-Holland, Amsterdam (1982)

    Google Scholar 

  109. Koningsberger, D.C., Prins, R. (eds.): X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. John Wiley & Sons, New York (1988)

    Google Scholar 

  110. Kreisel, J., Vincent, H., Tasset, F., Pate, M., Ganne, J.P.: An investigation of the magnetic anisotropy change in BaFe12 − 2xTixCoxO19 single crystals. J. Magn. Magn. Mater. 224, 17–29 (2001)

    Article  ADS  Google Scholar 

  111. Kubiak, R., Morgner, H., Rakhovskaya, O.: Study of NiO/Ni(100) structural changes under the influence of ion irradiation at different temperatures. Surf. Sci. 321, 229–236 (1994)

    Article  ADS  Google Scholar 

  112. Landfester, K., Ramirez, L.: Encapsulated magnetite particles for biomedical application. J. Phys. Condens. Matter. 15, S1345–1362 (2003)

    Article  ADS  Google Scholar 

  113. Landfester, K., Willert, M., Antonietti, M.: Preparation of polymer particles in nonaqueous direct and inverse miniemulsions. Macromolecules 33, 2370–2376 (2000)

    Article  ADS  Google Scholar 

  114. Lang, C., Schüler, D.: (2006) Biomineralization of magnetosomes in bacteria: Nanoparticles with potential applications. In: Rehm, B. (ed) Microbial Bionanotechnology: Biological self-assembly systems and biopolymer-based nanostructures. Horizon Scientific Press. In press. (2006)

    Google Scholar 

  115. Langevin, D. (Ed.): Light Scattering by Liquid Surfaces and Complementary Techniques. Marcel Dekker, New York (1992)

    Google Scholar 

  116. Lange, J., Kötitz, R., Haller, A., Trahms, L., Semmler, W., Weitschies, W.: Magnetirelaxometry-a new binding specific detection method based on magnetic nanoparticles. J. Magn. Magn. Mat. 252, 381–383 (2002)

    Article  ADS  Google Scholar 

  117. Lee, J., Isobe, T., Senna, M.: Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation. Colloid surface A 109, 121–127 (1996)

    Article  Google Scholar 

  118. Lembke, U., Hoell, A., Kranold, R., Müller, R., Schüppel, W., Goerigk, G., Gilles, R., Wiedenmann, A.: Formation of magnetic nanocrystals in a glass ceramic studied by small-angle scattering. J. Appl. Phys. 85(4), 2279–2285 (1999)

    Article  ADS  Google Scholar 

  119. Liu, C., Wu, X., Klemmer, T., Shukla, N., Yang, X., Weller, D., Roy, A.G., Tanase, M., Laughlin, D.: Polyol process synthesis of monodispersed FePt nanoparticles J. Phys. Chem. 108, 6121–6123 (2004)

    Article  Google Scholar 

  120. Lorenz, M.R., Holzapfel, V., Musyanovych, A., Nothelfer, K., Walther, P., Frank, H., Landfester, K., Schrezenmeier, H., Mailänder, V.: Uptake of functionalized, fluorescent labelled particles in different cell lines and stem cells. Biomaterials 27, 2820–2828 (2006)

    Article  Google Scholar 

  121. Lübbe, A.S., Bergemann, C., Huhnt, W., Fricke, T., Riess, H., Brock, J.W., Huhn, D.: Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res. 56, 4694–4701 (1996)

    Google Scholar 

  122. Maiorov, M.M.: Magnetization curve of magnetic fluid and distribution of magnetic moment of ferroparticles. 10th Riga Conf Magn Gidrodin, Riga (1981).

    Google Scholar 

  123. Massart, R.: Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17(2), 1247–1248 (1981)

    Article  ADS  Google Scholar 

  124. Massart, R., Cabuil, V.: Effect of some Parameters on the Formation of Colloidal Magnetite in Alkaline-Medium-Yield and Particle-Size Control. J. Chem. Phys. 84, 967–973 (1987)

    Google Scholar 

  125. Margeat, O., Amiens, C., Chaudret, B., Lecante, P., Benfield, R.E.: Chemical control of structural and magnetic properties of cobalt nanoparticles, Chem. Mater. 17, 107–111 (2005)

    Google Scholar 

  126. Martsenyuk, M.A., Raikher, Y.L., Shliomis. M.I.: On the kinetics of magnetization of suspensions of ferromagnetic particles. Sov. Pys. JETP 38, 413–416 (1974)

    ADS  Google Scholar 

  127. Matyjaszewski, K., Davis, T.P.: Handbook of Radical Polymerization. Wiley-Interscience, New York (2002)

    Book  Google Scholar 

  128. Matz, H., Drung, D., Hartwig, S., Groβ, H., Kötitz, R., Müller, W., Vass, A., Weitschies, W., Trahms, L.: A SQUID measurement system for immunoassays. Appl. Supercond. 6, 577–583 (1998)

    Article  Google Scholar 

  129. Mekhonoshin, V.V., Lange, A.: Chain-induced effects in the Faraday instability on ferrofluids in a horizontal magnetic field. Phys. Fluids 16, 925–935 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  130. Mitsumori, M., Hiraoka, M., Shibata, T., Okuno, Y., Nagata, Y., Nishimura, Y., Abe M., Hasegawa, M., Nagae, H., Ebisawa, Y.: Targeted hyperthermia using dextran magnetite complex: A new treatment modality for liver tumors. Hepato gastroenterol 43: 1431–1437 (1996)

    Google Scholar 

  131. Modrow, H.: Tuning nanoparticle properties - the X-ray absorption spectroscopic point of view. Appl. Spectr. Rev. 39, 183–290 (2004)

    Article  ADS  Google Scholar 

  132. Modrow, H., Bucher, S., Hormes, J., Brinkmann, R., Bönnemann, H.: Model for chainlength-dependent core-surfactant interaction in N(alkyl)4Cl-stabilized colloidal metal particles obtained from X-ray absorption spectroscopy. J. Phys. Chem. B 107, 3684–3689 (2003)

    Article  Google Scholar 

  133. Molday, R.S.: US Patent No. 4452773 (1984)

    Google Scholar 

  134. Moras, K., Schaarschuch, R., Riehemann, W.: Production of nanoscale FeSi and FeCr Powders for magnetofluid application using laser evaporation. Magnetohydrodynamics 39, 35–39 (2003)

    Article  ADS  Google Scholar 

  135. Moras, K., Schaarschuch, R., Riehemann, W., Zinoveva, S., Modrow, H., Eberbeck, D.: Production and characterisation of magnetic nanoparticles produced by laser evaporation for ferrofluids. J. Mag. Mag. Mat. 293, 119–126 (2004)

    Article  ADS  Google Scholar 

  136. Moras, K., Schaarschuch, R., Riehemann, W., Zinoveva, S., Modrow, H., Eberbeck, D.: Production and characterisation of magnetic nanoparticles produced by laser evaporation for ferrofluids. J. Magn. Magn. Mater. 293, 119–123 (2005)

    Article  ADS  Google Scholar 

  137. Morgner, H.: The characterization of liquid and solid surfaces with metastable helium atoms. Adv. Atom. Mol. Opt. Phys. 42, 387–488 (2000)

    Article  ADS  Google Scholar 

  138. Moskowitz, B.M.: Biomineralization of Magnetic Minerals. Rev. Geophys. 33, 123–128 (1995)

    Article  ADS  Google Scholar 

  139. Müller, R., Steinmetz, H., Zeisberger, M., Schmidt, C.H., Dutz, S., Hergt, R., Gawalek, W.: Precipitated iron oxide particles by cyclic growth. Z. Phys. Chem. 220, 51–57 (2006)

    Article  Google Scholar 

  140. Müller, R., Hergt, R., Zeisberger, M., Gawalek, W.: Preparation of magnetic nanoparticles with large specific loss power for heating applications. J. Magn. Magn. Mater. 289, 13–16 (2005)

    Article  ADS  Google Scholar 

  141. Müller, R., Steinmetz, H., Hiergeist, R., Gawalek, W.: Magnetic particles for medical applications by glass crystallisation. J. Magn. Magn. Mater. 272–276: 1539–1541 (2004)

    Article  ADS  Google Scholar 

  142. Müller, R., Hiergeist, R., Gawalek, W., Hoell, A.: Ba-ferrite particles for magnetic liquids with enhanced Neel relaxation time and loss investigations. Magnetohydrodynamics 39(1), 47–50 (2003)

    ADS  Google Scholar 

  143. Müller, R., Hiergeist, R., Gawalek, W., Hoell, A., Wiedenmann, A,: Magnetic and structural investigations on barium hexaferrite ferrofluids. J. Magn. Magn. Mater. 252, 43–45 (2002)

    Article  ADS  Google Scholar 

  144. Murayama, H., Ichikuni, N., Negishi, Y., Nagata, T., Tsukuda, T.: EXAFS study on interfacial structure between Pd cluster and n-octadecanethiolate monolayer: Formation of mixed Pd-S interlayer. Chem. Phys. Lett. 376, 26–32 (2003)

    Article  ADS  Google Scholar 

  145. Murray, C.B., Sun, S., Gaschler, W., Doyle, H., Betley, T.A., Kagan, C.R.: Colloidal Synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 45, 47–56 (2001)

    Article  Google Scholar 

  146. N’eel, M.L.: Theorie du Trainage Magnetique des Ferromagnetiques en Grains fin avec Application aux Terres Cuites. Annal. Geophy. 5, 99 (1949)

    Google Scholar 

  147. N’eel, M.L.: Effects of thermal fluctuations on the magnetization of small particles. C R Acad. Sci. Paris 228, 664–668 (1949)

    Google Scholar 

  148. Ochs, D., Brause, M., Maus-Friedrichs, W., Kempter, V., Puchin, V., Shluger, A., Kantorovich, L.: Study of the surface electronic structure of MgO bulk crystals and thin films. Surf. Sci. 365, 557–571 (1996)

    Article  ADS  Google Scholar 

  149. Ochs, D., Brause, M., Maus-Friedrichs, W., Kempter, V.: Characterization of LiF and CaF2 surfaces using MIES and UPS (HeI). J. Electr. Spectrosc. Relat. Phenomena. 88–91, 725–732 (1998)

    Article  Google Scholar 

  150. Palina, N., Modrow, H., Müller, R., Hormes, J., Dowben, P.A., Losovyj, Ya.B.: The electronic structure and band hybridization of Co/Ti doped (BaFe12O19). Mater. Lett. 60, 236–240 (2006)

    Article  Google Scholar 

  151. Papaefthymiou, G.C., Ahmed, S.R., Kofinas, P.: Magnetic and structural characterisation of (CoFe2O4) nanparticles encapsulated within block copolymer films. Re. Adv. Mater. Sci. 10, 306–313 (2005)

    Google Scholar 

  152. Papell, S.S.: US Patent No. 3215572 (1965)

    Google Scholar 

  153. Papirer, E., Horny, P., Balard, H., Anthore, R., Petipas, C., Martinet, A.: The preparation of a ferrofluid by decomposition of dicobalt octacarbonyl. J. Coll. Interf. Sci. 94, 207–219 (1983)

    Article  ADS  Google Scholar 

  154. Papirer, E., Horny, P., Balard, H., Anthore, R., Petipas, C., Martinet, A.: The preparation of a ferrofluid by decomposition of dicobalt octacarbonyl. J. Coll. Interf. Sci. 94, 220–228 (1983)

    Article  ADS  Google Scholar 

  155. Park, S.J., Kim, S., Lee, S., Khim, Z., Char, K., Hyeon, T.: Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122, 8581–8582 (2000)

    Article  Google Scholar 

  156. Pedersen, J.S.: Determination of size distribution from Small Angle Scattering data for systems with effective hard-sphere interaction. J. Appl. Cryst. 27, 595–608 (1994)

    Article  Google Scholar 

  157. Percus, J.K., Yevick, G.J.: Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev. 110, 1–13 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  158. Puntes, V.F., Krishnan, K.M., Alivisatos, P.: Colloidal nanocrystal shape and size control: The case of cobalt. Appl. Phys. Lett. 78, 2187–2117 (2001)

    Article  ADS  Google Scholar 

  159. Pusey, P.N.: Colloidal Suspensions in Liquids In: Freezing and Glass Transition, pp. 765–942 Elsevier, (1991)

    Google Scholar 

  160. Ramirez, L.P., Landfester, K.: Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol. Chem. Phys. 204, 22–31 (2003)

    Article  Google Scholar 

  161. Reimers, G.W., Khalafalla, S.E.: US Patent No. 3843540 (1974)

    Google Scholar 

  162. Rembaum, A.: U.S. Patent No. 4, 267, 234 (1981)

    Google Scholar 

  163. Riehemann, W., Mordike, B.L.: Production of Powder by Irradiating Surfaces with High Power Laser Beams. In: Mordike, B.L. (ed) Laser Treatment of Materials, DGM-Informationsgesellschaft. pp. 459–466. (1987)

    Google Scholar 

  164. Riehemann, W.: Synthesis of nanoscaled powders by laser-evaporation of materials. In: Gonsalves, K.E., Baraton, M-I., Singh, R., Hofmann, H., Chen, J.X., Akkara, J.A. (eds.) Surface-Controlled Nanoscale Materials for High-Added-Value Applicatons. MRS Warrendale. pp. 3–14 (1998)

    Google Scholar 

  165. Rocchiccioli-Deltcheff, C., Franck, R., Cabuil, V., Massart, R.: Surfacted Ferrofluids – Interactions at the Surfactant-Magnetic Iron-Oxide Interface. J. Chem. Res. 1209–1230 (1987)

    Google Scholar 

  166. Rosensweig, R.E.: Ferrohydrodynamics. 1st edn. Cambridge University Press, New York (1985)

    Google Scholar 

  167. Rosensweig, R.E.: Ferrohydrodynamics. Dover, Mineola (1997)

    Google Scholar 

  168. Robert, A., Wagner, J., Autenrieth, T., Härtl, W., Grübel, G.: Structure and dynamics of electrostatically interacting magnetic nanoparticles in suspension. J. Chem. Phys. 122, 084701 (2005)

    Article  ADS  Google Scholar 

  169. Robert, A., Wagner, J., Autenrieth, T., Härtl, W., Grübel, G.: Coherent X-rays as a new probe for the investigations of the dynamics of opaque colloidal suspensions. J. Magn. Magn. Mater. 289, 47–49 (2005)

    Article  ADS  Google Scholar 

  170. Roger, J., Pons, J.N., Massart, R., Halbreich, A., Bacri, J.C.: Some biomedical applications of ferrofluids. Eur. Phys. J. Appl. Phys. 5, 321–325 (1999)

    Article  ADS  Google Scholar 

  171. Romanus, E., Matoussevitch, N., Prass, S., Heinrich, J., Müller, R., Berkov, D.V., Bönnemann, H., Weber, P.: Magnetic characterization of cobalt nonoparticles by temperature-dependent magnetic relaxation measurements. Appl. Organomet. Chem. 18, 548–552 (2004)

    Article  Google Scholar 

  172. Rudenkiy, S., Frerichs, M., Voigts, F., Maus-Friedrichs, W., Kempter, V., Brinkmann, R., Matoussevitch, N., Brijoux, W., Bönnemann, H., Palina, N., Modrow, H.: Study of the structure and stability of cobalt nanoparticles for ferrofluidic applications. Appl. Organomet. Chem. 18, 553–560 (2004)

    Article  Google Scholar 

  173. Saita, S., Maenosono, S.: Formation mechanism of FePt nanoparticles synthesized via pyrolysis of iron (III) ethoxide and platinum(II) acetylacetonate. Cham. Mater. 17, 6624–6634 (2005)

    Article  Google Scholar 

  174. Sauzedde, F., Elaïssari, A., Pichot, C.: Hydrophilic magnetic polymer latexes. 1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. Colloid. Polym. Sci. 277, 846–855 (1999)

    Article  Google Scholar 

  175. Sato, K., Jeyadevan, B., Tohji, K.: Preparation and properties of ferromagnetic FePt dispersion. J. Magn. Magn. Mater. 289, 1–4 (2005)

    Article  ADS  Google Scholar 

  176. Schaarschuch, R., Riehemann, W.: Production of defined nanoscaled metal powders by laser evaporation of multi-phase targets. In: Müller, E. (ed.) Handling of highly dispersed powders, pp. 50–57. Shaker, Aachen, (2004)

    Google Scholar 

  177. Schaarschuch, R., Moras, K., Riehemann, W., Brendebach, B., Modrow, H.: Production and characterisation of ferromagnetic nanoscale metal powders produced by laser evaporation. Z. Phys. Chem. 220, 59–68 (2006)

    Article  Google Scholar 

  178. Scheffel, A., Gruska, M., Faivre, D., Linaroudis, A.A., Plitzko, J.M., Schüler, D.: An acidic protein aligns magnetosomes along a filamentous structure. Nature advance online publication doi:10.1038/nature04382 (2005)

    Google Scholar 

  179. Schindler, A., Hibionada, Y.M., Pitt, C.G.: Aliphatic Polyesters. 3. Molecular-Weight and Molecular-Weight Distribution in Alcohol-Initiated Polymerizations of (ϵ)-Caprolactone. J. Polym. Sci. Polym. Chem. Ed. 20, 319–326 (1982)

    Article  ADS  Google Scholar 

  180. Schmidt, A.M.: The Synthesis of Magnetic Core-Shell Nanoparticles by Surface-Initiated Ring-Opening Polymerization of(ϵ)-Caprolactone. Macromol. Rapid Commun. 26, 93–97 (2005)

    Article  Google Scholar 

  181. Schübbe, S., Kube, M., Scheffel, A., Wawer, C., Heyen, U., Meyerdierks, A., Madkour, M., Mayer, F., Reinhardt, R., Schüler, D.: Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J. Bacteriol. 185, 5779–5790 (2003)

    Article  Google Scholar 

  182. Schüler, D.: Formation of magnetosomes in magnetotactic bacteria. J. Mol. Microbiol. Biotechnol. 1, 79–86 (1999)

    Google Scholar 

  183. Schüler, D.: The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. Int. Microbiol. 5, 209–214 (2002)

    Article  Google Scholar 

  184. Schüler, D., Frankel, R.B.: Bacterial magnetosomes: Microbiology, biomineralization and biotechnological applications. Appl. Microbiol. Biotechnol. 52, 464–473 (1999)

    Article  Google Scholar 

  185. Schultheiss, D., Handrick, R., Jendrossek, D., Hanzlik, M., Schüler, D.: The presumptive magnetosome protein Mms16 is a PHB-granule bound protein (phasin) in Magnetospirillum gryphiswaldense. J. Bacteriol. 187, 2416–2425 (2005)

    Article  Google Scholar 

  186. Singer, J.M.: NATO ASI Series E, No. 138. In: El-Aasser M.S., Fitch, R.M. (eds.) p. 371. N. Nijhoff Publ., Dordrecht, The Netherlands (1987)

    Google Scholar 

  187. Shimoiizaka, J., Nakatsuka, K., Fujita, T., Kounosu, A.: Fine particles Processing. In: Somasundaran, P. (ed.) Proceedings of the international symposium on fine particles processing, vol. 2. New York (1980)

    Google Scholar 

  188. Sham, T.K. (ed.): Chemical Applications of Synchrotron Radiation. World Scientific, River Edge NJ (2002)

    Google Scholar 

  189. Shevchenko, E.V., Talapin, D.V., Rogach, A.L., Kornowski, A., Haase, M., Weller, H.: Colloidal Synthesis and Self-Assembly of CoPt3 nanocrystals. J. Am. Chem. Soc. 124, 11480–11485 (2002)

    Article  Google Scholar 

  190. Shirk, B.T., Buessem, W.R.: Magnetic properties of barium ferrite formed by crystallization of a glass. J. Am. Ceram. Soc. 53, 192 (1970)

    Article  Google Scholar 

  191. Sourmail, T.: Near equiatomic (FeCo) alloys: Constitution, mechanical and magnetic properties Progr. Mater. Sci. 50, 816–880 (2005)

    Google Scholar 

  192. Staupendahl, G., Michel, G., Eberhardt, G., Müller, E., Oestreich, C., Vogelsberger, W., Schlegel, J.: Production of nanosized zirkonia particles by pulsed CO2 laser evaporation. J. Laser Appl. 11, 14–20 (1999)

    Article  ADS  Google Scholar 

  193. Stöhr, J.: NEXAFS spectroscopy Springer, Berlin (1992)

    Book  Google Scholar 

  194. Sudfeld, D., Ennen, I. Hütten, A., Golla-Schindler, U., Jaksch, H., Reiss, G., Meiβner, D., Wojczykowski, K., Jutzi, P., Saikaly, W., Thomas, G.: Microstructural investigation of ternary alloyed magnetic nanoparticles. J. Magn. Magn. Mater. 293, 151–161 (2005)

    Article  ADS  Google Scholar 

  195. Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)

    Article  ADS  Google Scholar 

  196. Suzuki, M., Shinkai, M., Kamihira, M., Kobayashi, T.: Preparation and characteristics of magnetite-labeled antibody with the use of poly(ethylene glycol) derivatives. Biotechnol. Appl. Bioc. 21, 335–345 (1995)

    Google Scholar 

  197. Tanaka, K., Kamiya, K., Yoko, T., Tanabe, S., Hirao, K., Soga, N.: Electron spin resonance study of iron ion clusters in borate glasses. Phys. Chem. Glasses 32(1) 16–21 (1991)

    Google Scholar 

  198. Teo, B.K.: EXAFS: basic principles and data analysis. Springer, Berlin (1986)

    Book  Google Scholar 

  199. Tiarks, F., Landfester, K., Antonietti, M.: Encapsulation of carbon black by miniemulsion polymerization. Macromol. Chem. Phys. 202, 51–60 (2001)

    Article  Google Scholar 

  200. Tribout, J., Chancel, F., Baraton, M.I., Ferkel, H., Riehemann, W.: Surface Characterisation of Tin Oxide Nanosized Powder by FTIR Spectrometry in Relation with the Semiconducting Properties. Key Eng. Mat. 132–136, 1341–1344 (1997)

    Article  Google Scholar 

  201. Tribout, J., Chancel, F., Baraton M.I., Ferkel, H., Riehemann, W.: Oxygen adsobtion on tin oxide nanosized powders characterized by FTIR spectrometry and relation with the sensor properties. In: Gonsalves, K.E., Baraton, M.I., Singh, R., Hofmann, H., Chen, J.X., Akkara, J.A. (eds.) Surface-Controlled Nanoscale Materials for High-Added-Value Applicatons, pp 95–103 MRS Warrendale (1998)

    Google Scholar 

  202. Ullrich, S., Kube, M., Schübbe, S., Reinhardt, R., Schüler, D.: A hypervariable 130 kb genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island, which undergoes frequent rearrangements during stationary growth. J. Bacteriol. 187, 176–7184 (2005)

    Article  Google Scholar 

  203. Van Keuren, E.R., Wiese, H., Horn. D.: Fiber-Optic Quasielastic light scattering in concentrated latex dispersions: Angular dependent measurements of Singly scattered light. Langmuir 9, 2883–2887 (1993)

    Article  Google Scholar 

  204. Veiga, V., Ryan, D.H., Sourty, E., Llanes, F., Marchessault, R.H.: Formation and characterization of superparamagnetic cross-linked high amylose starch. Carbohydr. Polym. 42, 353–357 (2000)

    Article  Google Scholar 

  205. Verwey, E.J.W., Overbeek, J.T.G.: Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam (1948)

    Google Scholar 

  206. Vestal, C.R., Zhang, Z.J.: Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J. Am. Chem. Soc. 125, 9828–9833 (2003)

    Article  Google Scholar 

  207. Viroonchatapan, E., Ueno, M., Sato, H., Adachi, I., Nagae, H., Tazawa, K., Horikoshi, I.: Preparation and characterization of dextrane magnetite-incorporated thermosensitive liposomes – an online flow system for quantifying magnetic responsiveness. Pharmaceut. Res. 12, 1176–1182 (1995)

    Article  Google Scholar 

  208. Wagner, J., Autenrieth, T., Hempelmann, R.: Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe 2 O 4-SiO2 core shell particles]. J. Magn. Magn. Mat. 252, 2–4 (2002)

    Article  ADS  Google Scholar 

  209. Wagner, J.: Small Angle Scattering from spherical core-shell particles: An analytical scattering function for particles with Schulz-Flory size distribution. J. Appl. Cryst. 37, 750–756 (2004)

    Article  Google Scholar 

  210. Wagner, J., Fischer, B., Autenrieth, T.: Field induced anisotropy of charged magnetic colloids: a RMSA approach. J. Chem. Phys. 124, 114901–114901 (2006)

    Article  ADS  Google Scholar 

  211. Wang, Z.L.: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. 104, 11531–1175 (2000)

    Article  Google Scholar 

  212. Weitschies, W., Kötitz, R., Bunte, T., Trahms, L.: Pharm. Pharmacol. Lett. 7, 1–4 (1997)

    Google Scholar 

  213. Wieckleder, M.S., Schlecht, S., Preis, W.: Trendbereicht: Nanoskalige Festkörper. Nachrichten aus der Chemie 54, 236–237. (2006)

    Google Scholar 

  214. Wiedenmann, A.: Polarized SANS for probing magnetic nanostructures. Physica B 356, 246–253 (2005)

    Article  ADS  Google Scholar 

  215. Wiedenmann, A.: Small-angle neutron scattering investigations of magnetic nanostructures and interfaces using polarized neutrons. Physica B 297, 226–233 (2001)

    Article  ADS  Google Scholar 

  216. Wiedenmann, A.: Magnetic and crystalline nanostructures in Ferrofluids as probed by SANS. In: Odenbach, S. (ed.) LectureNotes in Physics 594, pp. 33–58. Springer (2002)

    ADS  Google Scholar 

  217. Wiedenmann, A.: Small-angle neutron scattering investigations of magnetic nanostructures using polarized neutrons. J. Appl. Cryst. 33, 428–432 (2000)

    Article  Google Scholar 

  218. Wiedenmann, A.: Small-angle neutron scattering investigations of nanoscaled microstructures. J. Appl. Cryst. 30, 580–585 (1997)

    Article  Google Scholar 

  219. Wiedwald, U., Spasova, M., Salabas, E.L., Ulmeanu, M., Farle, M.: Ratio of orbital-to-spin magnetic moment in Co core-shell nanoparticles. Phys. Rev. B 6806, 4424–4424 (2003)

    Google Scholar 

  220. Wiese, H., Horn, D.: Single-mode fibers in fiber-optic quasielastic light scattering: A study of the dynamics of concentrated latex dispersions, J. Chem. Phys. 94, 6429–6443 (1991)

    Article  ADS  Google Scholar 

  221. Will, S., Leipertz, A.: Thermophysical properties of Fluids from dynamic light scattering. Int. J. Thermophysics. 22, 317–338 (2001)

    Article  Google Scholar 

  222. Wormuth, K.: Superparamagnetic latex via inverse emulsion polymerization. J. Colloid. Interf. Sci. 241, 366–377 (2001)

    Article  ADS  Google Scholar 

  223. Wu, Z.H., Zhang, J., Benfield, R.E., Ding, Y.F., Grandjean, D., Zhang, Z.L., Ju, X.: Structure and chemical transformation in cerium oxide nanoparticles coated by surfactant cetyltrimethylammonium bromide (CTAB): An x-ray absorption spectroscopic study. J. Phys. Chem. B 106, 4569–4577 (2002)

    Article  Google Scholar 

  224. Xu, R.: Particle Characterization: Light Scattering Methods. Kluwer, Dordrecht (2000)

    Google Scholar 

  225. Ying, Y., Rioux, R, M., Erdonmez, C.K., Hughes, S., Somorjai, G., Alivisatos, P.: Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Sience 304, 711–714 (2004)

    Article  ADS  Google Scholar 

  226. Zaitsev, V.S., Filimonov, D.S., Presnyakov, I.A., Gambino, R.J., Chu, B.: Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J. Colloid. Interf. Sci. 212, 49–57 (1999)

    Article  ADS  Google Scholar 

  227. Zhang, P., Sham, T.K.: X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: The interplay of size and surface effects. Phys. Rev. Lett. 90, 245502 (2003)

    Article  ADS  Google Scholar 

  228. Zubris, M., King, R.B., Garmestani, H., Tannenbaum, R.: (FeCo) nanoalloy formation by decomposition of their carbonyl precursors. J. Mater. Chem. 15, 1277–1285 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Behrens, S. et al. (2009). Synthesis and Characterization. In: Odenbach, S. (eds) Colloidal Magnetic Fluids. Lecture Notes in Physics, vol 763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85387-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85387-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85386-2

  • Online ISBN: 978-3-540-85387-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics