Advertisement

A Problem-Orientable Numerical Algorithm for Modeling Multi-Dimensional Radiative MHD Flows in Astrophysics – the Hierarchical Solution Scenario

  • A. Hujeirat

Summary

We present a hierarchical algorithm for the adaptation of numerical solvers in high energy astrophysics.

This approach is based on clustering the entries of the global Jacobian in a hierarchical manner that enables employing a variety of solution procedures ranging from a purely explicit time-stepping up to fully implicit schemes.

A gradual coupling of the radiative MHD equation with the radiative transfer equation in higher dimensions is possible.

Using this approach, it is possible to follow the evolution of strongly time-dependent flows with low/high accuracies and with efficiency comparable to explicit methods, as well as searching quasi-stationary solutions for highly viscous flows.

In particular, it is shown that the hierarchical approach is capable of modeling the formation of jets in active galactic nuclei and reproduce the corresponding spectral energy distribution with a reasonable accuracy.

Key words

Computational methods in fluid dynamics Radiation transfer Magnetohydrodynamics Physical processes 

PACS

02.60 02.70 47.70 95.30 95.30.Qd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Balbus, S., Hawley, J., 1991, ApJ, 376 Google Scholar
  2. [2]
    Beam, R.M., Warming, R.F., 1978, AIAA, 16, 393 zbMATHCrossRefGoogle Scholar
  3. [3]
    Brandt, A., 2001, in “Multigrid”, ed.: Trottenberg, U., Oosterlee, C., Schüller, A., Acad. Press, London Google Scholar
  4. [4]
    Dongarra, J., Duff, I., Sorensen, D., van der Vorst, H.A., 1998, “Num. Linear Alg. for High-Performance Computers”, SIAM, Philadelphia Google Scholar
  5. [5]
    Felten, J.E., & Rees, M.J., 1972, “Transfer effects on X-Ray lines in optically thick sources”, A&A, 21, 139-150 Google Scholar
  6. [6]
    Fletcher, C.A.J., 1988, “Computational Techniques for Fluid Dynamics”, Vol, I and II, Springer-Verlag Google Scholar
  7. [7]
    Font, J.A., 2000, “Numerical Hydrodynamics in General Relativity”, Living Rev. Relativity, 3, 1-81 MathSciNetGoogle Scholar
  8. [8]
    Fryxell, B., Olson, K., Ricker, P., et al., 2000, “FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes”, ApJS, 131, 273-334 CrossRefGoogle Scholar
  9. [9]
    Gammie, C.F., McKinney, J.C., Tóth, G., 2003, “HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics”, ApJ, 589, 444-457 CrossRefGoogle Scholar
  10. [10]
    Hirsch, C., 1990, “Num. Computation of Internal and External Flows”, Vol. I, and II, John Wiley & Sons, New York Google Scholar
  11. [11]
    Hujeirat, A., Papaloizou, J.C.P., 1998, “Shock formation in accretion columns – a 2D radiative MHD approach”, A&A, 340, 593-604 Google Scholar
  12. [12]
    Hujeirat, A., Rannacher, R., 2001, “On the efficiency and robustness of implicit methods in computational astrophysics”, NewAR, 45, 425-447 CrossRefGoogle Scholar
  13. [13]
    Hujeirat, A., Camenzind, M., Livio, M., 2002, “Ion-dominated plasma and the origin of jets in quasars”, A&A, 394, L9-L13 CrossRefGoogle Scholar
  14. [14]
    Hujeirat, A., Camenzind, M., Burkert, A., 2002b, “Comptonization and synchrotron emission in 2D accretion flows. I. A new numerical solver for the Kompaneets equation”, A&A, 386, 757-762 CrossRefGoogle Scholar
  15. [15]
    Hujeirat, A., Livio, M., Camenzind, M., Burkert, A., 2003, “A model for the jet-disk connection in BH accreting systems”, A&A, 408, 415-430 CrossRefGoogle Scholar
  16. [16]
    Hujeirat, A., 2004, “A model for electromagnetic extraction of rotational energy and formation of accretion-powered jets in radio galaxies”, A&A, 416, 423-435 CrossRefGoogle Scholar
  17. [17]
    Hujeirat, A., 2004, “A method for enhancing the stability and robustness of explicit schemes in CFD”, New Astronomy Reviews, Vol. 2, Issue 3, 173-193 Google Scholar
  18. [18]
    Katz, J.A., 1976, “Nonrelativistic Compton scattering and models of quasars”, ApJ, 206, 910-916 CrossRefGoogle Scholar
  19. [19]
    Iilarinov, A.F., & Sunyaev, R.A., 1972, “Compton scattering by thermal electrons in X-ray sources,” Soviet Astr. -AJ, 16, 45 Google Scholar
  20. [20]
    Kley, W., 1989, “Radiation hydrodynamics of the boundary layer in accretion disks. I – Numerical methods”, A&A, 208, 98-110 Google Scholar
  21. [21]
    Koide, S., Shibata, K., & Kudoh, T., 1999, “Relativistic Jet Formation from Black Hole Magnetized Accretion Disks: Method, Tests, and Applications of a General Relativistic Magnetohydrodynamic Numerical Code”, ApJ, 522, 727-752 CrossRefGoogle Scholar
  22. [22]
    Koide, S., Shibata, K., Kudoh, T., & Meier, D.L., 2002, “Extraction of Black Hole Rotational Energy by a Magnetic Field and the Formation of Relativistic Jets”, Science, 195, 1688-1691 CrossRefGoogle Scholar
  23. [23]
    Komissarov, S.S., 1999, “A Godunov-type scheme for relativistic magnetohydrodynamics”, MNRAS, 303, 343-366 CrossRefGoogle Scholar
  24. [24]
    Levermore, C.D., & Pomraning, G.C., 1981, “A flux-limited diffusion theory”, ApJ, 248, 321-334 CrossRefGoogle Scholar
  25. [25]
    Mahadevan, R., Narayan, R., & Yi, I., 1996, “ Harmony of electrons: Cyclotron and Synchrotron emission by thermal electrons in magnetic fields”, ApJ, 465, 327-337 CrossRefGoogle Scholar
  26. [26]
    MacCormack, R.W., 1985, “Current status of numerical solutions of Navier-Stokes equations”, AIAA, Paper 81-0110, 1-18 Google Scholar
  27. [27]
    Martí, J.M., Müller, E., 1999, “Numerical hydrodynamics in special relativity”, Living Rev. Relativity, 2, 1-100 Google Scholar
  28. [28]
    Meier, D.L., Koide, S., & Uchida, Y., 2001, “Magnetohydrodynamic Production of Relativistic Jets”, Science, 291, 84-92 CrossRefGoogle Scholar
  29. [29]
    Meier, D., 2003, “The theory and simulation of relativistic jet formation: towards a unified model for micro- and macroquasars”, NewAR, 47, 667-672 CrossRefGoogle Scholar
  30. [30]
    Mihalas, D., Mihalas, B.W., 1984, “Foundations of radiation hydrodynamics”, Oxford University Press, NY (MM) zbMATHGoogle Scholar
  31. [31]
    Ouyed, R., Pudritz, R., 1997, “Numerical simulation of astrophysical jets from Keplerian disks. II. episodic outflows”, ApJ, 484, 794-809 CrossRefGoogle Scholar
  32. [32]
    Payne, D.G., 1980, “Time-dependent Comptonization – X-ray reverberations”, ApJ, 237, 951-963 CrossRefGoogle Scholar
  33. [33]
    Rybiki, G.B., & Lightman, A.P., 1979, “Radiation Processes”, Wiley-Interscience Publication Google Scholar
  34. [34]
    Saad, Y., van der Vorst, H.A., 2000, “Iterative solution of linear systems in the 20-th century”, J. of Comp. and Appl. Math., 123, 1-33 zbMATHCrossRefGoogle Scholar
  35. [35]
    Shapiro, S.L., Lightman, A.P., & Eardley, D.M., 1976, “A two-temperature accretion disk model for Cygnus X-1 structure and spectrum”, ApJ, 204, 187-199 CrossRefGoogle Scholar
  36. [36]
    Stone, J.M., Norman, M., 1992, “ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I – The hydrodynamic algorithms and tests”, ApJS, 80, 791-818 CrossRefGoogle Scholar
  37. [37]
    Tóth, Keppens, R., Botchev, M.A., 1998, “Implicit and semi-implicit schemes in the Versatile Advection Code: numerical tests”, A&A, 332, 1159-1170 Google Scholar
  38. [38]
    Trottenberg, U., 2001, in Multigrid, ed.: Trottenberg, U., Oosterlee, C., Schüller, A., Acad. Press, London Google Scholar
  39. [39]
    Uchida, Y., Nakamura, M., Hirose, S., Uemura, S., 1999, “Magnetodynamic formation of jets in accretion process of magnetized mass onto the central gravitator”, Ap&SS, 264, 195-212 zbMATHCrossRefGoogle Scholar
  40. [40]
    De Villiers, J.-P., & Hawley, J.F., 2003, “A Numerical Method for General Relativistic Magnetohydrodynamics”, ApJ, 589, 458-480 CrossRefGoogle Scholar
  41. [41]
    Ziegler, U., 1998, “NIRVANA+: An adaptive mesh refinement code for gas dynamics and MHD”, Comp. Phys. Comm., 109, 111-123 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. Hujeirat
    • 1
  1. 1.Institute of Applied MathematicsUniversity of HeidelbergHeidelbergGermany

Personalised recommendations