Advertisement

A General-Purpose Finite Element Method for 3D Radiative Transfer Problems

  • Erik Meinköhn

Summary

This paper presents a continuous finite-element method for solving the resonance-line transfer problem in moving media. The algorithm is capable of dealing with three spatial dimensions, using unstructured grids which are adaptively refined by means of an a-posteriori error indicator. Application of the method to coherent isotropic scattering and complete redistribution gives a result of matrix structure which is discussed in the paper. The solution is obtained by way of an iterative procedure, which solves a succession of quasi-monochromatic radiative transfer problems. It is therefore immediately evident that any simulation of the extended frequency-dependent model requires a solution strategy for the elementary monochromatic transfer problem, which is fast as well as accurate. The present implementation is applicable to arbitrary model configurations with optical depths up to 103–104. Additionally, a combination of a discontinuous finite-element method with a superior preconditioning method is presented, which is designed to overcome the extremely poor convergence properties of the linear solver for optically thick and highly scattering media.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ada72]
    Adams, T.F.: The escape of resonance-line radiation from extremely opaque media. Astrophys. J., 174, 439 (1972) CrossRefGoogle Scholar
  2. [AL02]
    Adams, M.L., Larsen, E.W.: Fast iterative methods for discrete-ordinates particle transport calculations. Prog. Nucl. Energy, 40, No. 1, 3–159 (2002) CrossRefGoogle Scholar
  3. [ALL01]
    Ahn, S.-H., Lee, H.-W., Lee, H.M.: Lyα line formation in starburst galaxies. I. Moderately thick, dustless and static H I media. Astrophys. J., 554, 604–614 (2001) CrossRefGoogle Scholar
  4. [ALL02]
    Ahn, S.-H., Lee, H.-W., Lee, H.M.: Lyα line formation in starburst galaxies. II. Extremely thick, dustless and static H I media. Astrophys. J., 567, 922–930 (2002) CrossRefGoogle Scholar
  5. [Arn82]
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19, 742–760 (1982) CrossRefMathSciNetzbMATHGoogle Scholar
  6. [AM69]
    Auer, L.H., Mihalas, D.: Non-LTE model atmospheres. III. a complete-linearization method. Astrophys. J., 158, 641 (1969) CrossRefGoogle Scholar
  7. [Bal01]
    Balsara, D.: Fast and accurate discrete ordinates methods for multi-dimensional radiative transfer. Part I, basic methods. J. Quant. Spectrosc. Radiat. Transfer, 69, 671–707 (2001) CrossRefGoogle Scholar
  8. [BR01]
    Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 2001, Cambridge University Press (2001), http://www.iwr.uni-heidelberg.de/sfb359/Preprints2001.html
  9. [Boe96]
    Böttcher K.: Adaptive Schrittweitenkontrolle beim Unstetigen Galerkin-Verfahren für Gewöhnliche Differentialgleichungen. Diplomarbeit, Universität Heidelberg (1996) Google Scholar
  10. [BH83]
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983) Google Scholar
  11. [BL00]
    Brantley, P.S., Larsen, E.W.: The simplified P 3 approximation. Nucl. Sci. Eng., 134, Part 1, 1–21 (2000) Google Scholar
  12. [CZ67]
    Case, K.M., Zweiffel, P.F.: Linear Transport Theory. Addison-Wesley Publishing Company, Reading, Massachusetts (1967) zbMATHGoogle Scholar
  13. [Cha50]
    Chandrasekhar, S.: Radiative Transfer, Clarendon Press, Oxford (1950) zbMATHGoogle Scholar
  14. [Cha60]
    Chandrasekhar, S.: Radiative Transfer, Dover, New York (1960) Google Scholar
  15. [DL00]
    Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6. Springer, Berlin Heidelberg New York (2000) Google Scholar
  16. [BRM00]
    De Breuck, C., Röttgering, H., Miley, G., van Breugel, W., Best, P.: A statistical study of emission lines from high redshift radio galaxies. Astron. Astrophys., 362, 519–543 (2000) Google Scholar
  17. [DT00]
    Dullemond, C.P., Turolla, R.: An efficient algorithm for two-dimensional radiative transfer in axisymmetric circumstellar envelopes and disks. Astron. Astrophys., 360, 1187–1202 (2000) Google Scholar
  18. [Edd26]
    Eddington, A.S.: The Internal Constitution of the Stars. Cambridge Univ. Press, Cambridge (1926) zbMATHGoogle Scholar
  19. [EWW95]
    Efimov, G.V., Waldenfels, W. von, Wehrse, R.: Analytic solution of the non-discretized radiative transfer equation for a slab of finite optical depth. J. Quant. Spectrosc. Radiat. Transfer, 53, 59–74 (1995) CrossRefGoogle Scholar
  20. [EWW97]
    Efimov, G.V., Waldenfels, W. von, Wehrse, R. Mathematical aspects of the plane-parallel transfer equation. J. Quant. Spectrosc. Radiat. Transfer, 58, 355 (1997) CrossRefGoogle Scholar
  21. [EJ93]
    Eriksson, K., Johnson, C.: Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems. Math. Comput., 60, No. 201, 167–188 (1993) CrossRefMathSciNetzbMATHGoogle Scholar
  22. [EJT85]
    Eriksson, K., Johnson, C., Thomée, C.: Time discretisation of parabolic problems by the discontinuous Galerkin method. RAIRO, Modélisation Math. Anal. Numér., 19, 611–643 (1985) zbMATHGoogle Scholar
  23. [EJ87]
    Eriksson, K., Johnson, C.: Error estimates and automatic time step control for nonlinear parabolic problems. I. SIAM J. Numer. Anal., 24, 12–23 (1987) CrossRefMathSciNetzbMATHGoogle Scholar
  24. [EJ91]
    Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. I: A linear model problem. SIAM J. Numer. Anal., 28, 43–77 (1991) CrossRefMathSciNetzbMATHGoogle Scholar
  25. [EEH95]
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numerica 1995, Cambridge University Press (1995) Google Scholar
  26. [FK97]
    Führer, C., Kanschat, G.: A posteriori error control in radiative transfer. Computing, 58, No. 4, 317–334 (1997) CrossRefMathSciNetzbMATHGoogle Scholar
  27. [FTM00]
    Fynbo, J.U., Thomsen, B., Møller, P.: Lyα emission from a Lyman limit absorber at z=3.036. Astron. Astrophys., 353, 457–464 (2000) Google Scholar
  28. [FMT01]
    Fynbo, J.U., Møller, P., Thomsen, B.: Probing the faint end of the galaxy luminosity function at z=3 with Lyα emission. Astron. Astrophys., 374, 443–453 (2001) CrossRefGoogle Scholar
  29. [GK03]
    Gopalakrishnan, J., Kanschat, G.: A multilevel discontinuous Galerkin method, Numer. Math., 95, Vol. 3, 527–550 (2003) CrossRefMathSciNetzbMATHGoogle Scholar
  30. [HM91]
    Haardt, F., Maraschi, L.: A two-phase model for the X-ray emission from Seyfert galaxies. Astrophys. J., 380, L51–L54 (1991) CrossRefGoogle Scholar
  31. [HM75]
    Habetler, G.J., Matkowsky, B.J.: Uniform asymptotic expansions in transport theory with small mean free paths, and the diffusion approximation. J. Math. Phys., 16, 846–854 (1975) CrossRefMathSciNetzbMATHGoogle Scholar
  32. [Hac85]
    Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Heidelberg (1985) zbMATHGoogle Scholar
  33. [Hac93]
    Hackbusch, W.: Iterative Lösung Grosser Schwachbesetzter Gleichungssysteme. Teubner, Stuttgart (1993) zbMATHGoogle Scholar
  34. [HM93]
    Hippelein, H., Meisenheimer, K.: Imaging of a Lyman-α absorption cloud in front of the radio galaxy 4C41.17. Nature, 362, 224–226 (1993) CrossRefGoogle Scholar
  35. [Hog98]
    Hogerheijde, M.: The Molecular Environment of Low-Mass Protostars, Ph.D. Thesis, Rijks Universiteit Leiden (1998) Google Scholar
  36. [HCM98]
    Hu, E.M., Cowie, L.L., McMahon, R.G.: The density of Ly-α emitters at very high redshift. Astrophys. J., 502, L99–L104 (1998) CrossRefGoogle Scholar
  37. [Hub03]
    Hubeny, I.: Accelerated lambda iteration: an overview. In: Hubeny I., Mihalas D., Werner K. (eds.) Stellar Atmosphere Modeling. ASP Conf. Ser. Vol. 288, San Francisco: Astronomical Society of the Pacific, 17–30 (2003) Google Scholar
  38. [Hul57]
    Hulst, H.C. van de: Light Scattering by Small Particles. Wiley, New York (1957) Google Scholar
  39. [HK80]
    Hummer, D.G., Kunasz, P.B.: Energy loss by resonance line photons in an absorbing medium. Astrophys. J., 236, 609–618 (1980) CrossRefGoogle Scholar
  40. [JP86]
    Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput., 46, 1–26 (1986) CrossRefzbMATHGoogle Scholar
  41. [Juv97]
    Juvela, M.: Non-LTE radiative transfer in clumpy molecular clouds. Astron. Astrophys., 322, 943–961 (1997) Google Scholar
  42. [Kal87]
    Kalkofen, W. (ed.): Numerical Radiative Transfer. Cambridge Univ. Press, Cambridge (1987) Google Scholar
  43. [Kan96]
    Kanschat, G.: Parallel and Adaptive Galerkin Methods for Radiative Transfer Problems. Ph.D. Thesis, University of Heidelberg (1996), http://www.iwr.uni-heidelberg.de/sfb359/Preprints1996.html
  44. [Kan00]
    Kanschat, G.: Solution of multi-dimensional radiative transfer problems on parallel computers. In: Björstad P. and Luskin M. (eds.) Parallel Solution of PDE, IMA Vol. in Math. and its Appl., 120, 85–96, Springer, Berlin Heidelberg New York (2000) Google Scholar
  45. [KM04]
    Kanschat, G., Meinköhn, E.: Multi-model preconditioning for radiative transfer problems. SFB359 Preprints, University of Heidelberg (2004), http://www.iwr.uni-heidelberg.de/sfb359/Preprints2004.html
  46. [Kou52]
    Kourganoff, V.: Basic Methods in Transfer Problems. Clarendon Press, Oxford (1952) zbMATHGoogle Scholar
  47. [Kou63]
    Kourganoff, V.: Basic Methods in Transfer Problems. Clarendon Press, Oxford (1963) Google Scholar
  48. [Kro55]
    Krook, M.: On the solutions of the equations of transfer I. Astrophys. J., 122, 488–495 (1955) CrossRefMathSciNetGoogle Scholar
  49. [KMF00]
    Kudritzki, R.-P., Mendez, R.H., Feldmeier, J.J., et al., Discovery of nine Lyα emitters at redshift z∼3.1 using narrowband imaging and VLT spectroscopy. Astrophys. J., 536, 19–30 (2000) CrossRefGoogle Scholar
  50. [KA88]
    Kunasz, P., Auer, L.H.: Short characteristic integration of radiative transfer problems - Formal solution in two-dimensional slabs. J. Quant. Spectrosc. Radiat. Transfer, 39, 67–79 (1988) CrossRefGoogle Scholar
  51. [KPR02]
    Kurk, J.D., Pentericci, L., Röttgering, H.J.A., Miley, G.K.: Observations of radio galaxy MRC 1138-262: Merging galaxies embedded in a giant Lyα halo. In: Henney, W.J., Steffen, W., Raga, A.C., Binette, L. (eds) Emission Lines from Jet Flows. RMxAA (Serie de Conferencias), Vol. 13, 191–195 (2002) Google Scholar
  52. [Lam65]
    Lamarsh, J.R.: Introduction to Nuclear Reactor Theory. Addison-Wesley Publishing Company, Reading, Massachusett (1965) Google Scholar
  53. [LK74]
    Larsen, E.W., Keller, J.B.: Asymptotic solution of neutron transport problems for small scale mean free paths. J. Math. Phys., 15, 75–81 (1974) CrossRefMathSciNetGoogle Scholar
  54. [LPB83]
    Larsen, E.W., Pomraning, G.C., Badham, V.C.: Asymptotic analysis of radiative transfer problems. J. Quant. Spectrosc. Radiat. Transfer, 29, 285–310 (1983) CrossRefGoogle Scholar
  55. [LMM87]
    Larsen, E.W., Morel, J.E., Miller, W.F. jun.: Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys., 69, 283–324 (1987) CrossRefMathSciNetzbMATHGoogle Scholar
  56. [Lar91]
    Larsen, E.W.: Transport acceleration methods as two-level multigrid algorithms. Oper. Theory, Adv. Appl., 51, 34–47 (1991) Google Scholar
  57. [LMM96]
    Larsen, E.W., Morel, J.E., McGhee, J.M.: Asymptotic derivation of the multigroup P 1 and simplified P N equations with anisotropic scattering. Nucl. Sci. Eng., 123, 328 (1996) Google Scholar
  58. [LTK02]
    Larsen, E.W., Thömmes, G., Klar, A., Seaid, M., Götz, T.: Simplified P N approximations to the equations of radiative heat transfer and applications. J. Comput. Phys., 183, 652–675 (2002) CrossRefMathSciNetzbMATHGoogle Scholar
  59. [LR74]
    LeSaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. In: de Boor (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, New York, 89-123 (1974) Google Scholar
  60. [MR02]
    Meinköhn, E., Richling, S.: Radiative transfer with finite elements. II. Lyα line transfer in moving media. Astron. Astrophys., 392, 827–839 (2002) CrossRefGoogle Scholar
  61. [Mei02]
    Meinköhn, E.: Modeling Three-Dimensional Radiation Fields in the Early Universe. Ph.D. Thesis, University of Heidelberg (2002), http://www.iwr.uni-heidelberg.de/sfb359/Preprints2002.html
  62. [Mih78]
    Mihalas, D.: Stellar Atmospheres. W.H. Freeman and Company, Second Edition, San Francisco (1978) Google Scholar
  63. [MW84]
    Mihalas, D., Weibel-Mihalas, B.: Foundation of Radiation Hydrodynamics. Oxford University Press, New York (1984) Google Scholar
  64. [MCK94]
    Murray, S., Castor, J., Klein, R., McKee, C.: Accretion disk coronae in high-luminosity systems. Astrophys. J., 435, 631–646 (1994) CrossRefGoogle Scholar
  65. [Neu90]
    Neufeld, D.A.: The transfer of resonance-line radiation in static astrophysical media. Astrophys. J., 350, 216–241 (1990) CrossRefGoogle Scholar
  66. [Pap75]
    Papanicolaou, G.C.: Asymptotic analysis of transport processes. Bull. Am. Math. Soc., 81, 330–392 (1975) CrossRefMathSciNetzbMATHGoogle Scholar
  67. [PH98]
    Park, Y.-S., Hong, S.S.: Three-dimensional Non-LTE Radiative Transfer of CS in Clumpy Dense Cores. Astrophys. J., 494, 605 (1998) CrossRefGoogle Scholar
  68. [Per57]
    Perron, O.: Die Lehre von den Kettenbrüchen, Band II. B.G. Teubner Verlagsgesellschaft, Stuttgart (1957) zbMATHGoogle Scholar
  69. [PSS79]
    Pozdniakov, L.A., Sobol, I.M., Suniaev, R.A.: The profile evolution of X-ray spectral lines due to Comptonization - Monte Carlo computations. Astron. Astrophys., 75, 214–222 (1979) Google Scholar
  70. [RA02]
    Rampp, M., Janka, H.-T.: Radiation hydrodynamics with neutrinos. Astron. Astrophys., 396, 361–392 (2002) CrossRefGoogle Scholar
  71. [RMD00]
    Rhoads, J.E., Malhotra, S., Dey, A.: First results from the large-area Lyman-α survey. Astrophys. J., 545, L85–L88 (2000) CrossRefGoogle Scholar
  72. [RM01]
    Richling, S., Meinköhn, E., Kryzhevoi, N., Kanschat, G.: Radiative transfer with finite elements. I. Basic method and tests. Astron. Astrophys., 380, 776–788 (2001) CrossRefGoogle Scholar
  73. [Sch05]
    Schuster, A.: Radiation through a foggy atmosphere. ApJ 21, 1 (1905) Reprod. in: Menzel D.H. (ed.) Selected papers on the transfer of radiation. New York: Dover (1966) CrossRefGoogle Scholar
  74. [SF93]
    Sleijpen, G.L.G., Fokkema, D.R.: Bicgstab(L) for linear equations involving unsymmetric matrices with complex spectrum. Electronic Transactions on Numerical Analysis, Vol. 1, 11–32 (1993), http://etna.mcs.kent.edu MathSciNetzbMATHGoogle Scholar
  75. [SPY95]
    Sonnhalter, C., Preibisch, T., Yorke, H.: Frequency dependent radiation transfer in protostellar disks. Astron. Astrophys., 299, 545 (1995) Google Scholar
  76. [Spa96]
    Spaans, M.: Monte Carlo models of the physical and chemical properties of inhomogeneous interstellar clouds. Astron. Astrophys., 307, 271 (1996) Google Scholar
  77. [SAS00]
    Steidel, C.C., Adelberger, K.L., Sharply, A.E., Pettini, M., Dickinson, M., Giavalisco, M.: Lyα Imaging of a Proto-Cluster Region at 〈z〉=3.09. Astrophys. J., 532, 170–182 (2000) CrossRefGoogle Scholar
  78. [SSW91]
    Stenholm, L.G., Störzer, H., Wehrse, R.: An efficient method for the solution of 3-D radiative transfer problems. J. Quant. Spectrosc. Radiat. Transfer, 45, 47–56 (1991) CrossRefGoogle Scholar
  79. [Tur93]
    Turek, S.: An efficient solution technique for the radiative transfer equation. Imp. Comput. Sci. Eng., 5, No. 3, 201–214 (1993) CrossRefMathSciNetzbMATHGoogle Scholar
  80. [ORC96]
    van Ojik, R., Röttgering, H.J.A., Carilli, C.L., Miley, G.K., Bremer, M.N., Macchetto, F.: A powerful radio galaxy at z=3.6 in a giant rotating Lyman-α halo. Astron. Astrophys., 313, 25–44 (1996) Google Scholar
  81. [ORM97]
    van Ojik, R., Röttgering, H.J.A., Miley, G.K., Hunstead, R.W.: The nature of the extreme kinematics in the extended gas of high redshift radio galaxies. Astron. Astrophys., 317, 358–384 (1997) Google Scholar
  82. [Var00]
    Varga, R.S.: Matrix Iterative Analysis. Springer, Berlin Heidelberg (2000) zbMATHGoogle Scholar
  83. [VBF99]
    Villar-Martín, M., Binette, L., Fosbury, R.A.E.: The gaseous environments of radio galaxies in the early Universe: kinematics of the Lyman-α emission and spatially resolved H I absorption. Astron. Astrophys., 346, 7–12 (1999) Google Scholar
  84. [Ver96]
    Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Wiley-Teubner, New York-Stuttgart (1996) zbMATHGoogle Scholar
  85. [WWM04]
    Warsa, J.S., Wareing, T.A., Morel, J.E.: Krylov iterative methods and the degraded effectiveness of diffusion synthetic acceleration for multidimensional Sn calculations in problems with material discontinuities. Nucl. Sci. Eng., 147, 218–248 (2004) Google Scholar
  86. [WMK99]
    Wehrse, R., Meinköhn, E., Kanschat, G.: A review of Heidelberg radiative transfer equation solutions. In: Stee P. (ed.) Radiative transfer and hydrodynamics in astrophysics. EAS Publication Series, Vol. 5, 13–30 (2002) Google Scholar
  87. [WBW00]
    Wehrse, R., Baschek, B., von Waldenfels, W.: The diffusion of radiation in moving media: I. Basic assumptions and formulae. Astron. Astrophys., 359, 780–787 (2000) Google Scholar
  88. [WHS99]
    Wolf, S., Henning, T., Stecklum, B.: Multidimensional self-consistent radiative transfer simulations based on the Monte-Carlo method. Astron. Astrophys., 349, 839–850 (1999) Google Scholar
  89. [YBL93]
    Yorke, H., Bodenheimer, P., Laughlin, G.: The formation of protostellar disks. I - 1 M(solar). Astrophys. J., 411, 274–284 (1993) CrossRefGoogle Scholar
  90. [ZM02]
    Zheng, Z., Miralda-Escudé, J.: Monte Carlo simulation of Lyα scattering and application to damped Lyα systems. Astrophys. J., 578, 33–42 (2002) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Erik Meinköhn
    • 1
    • 2
  1. 1.Institute f. Theoret. AstrophysicsUniversity of HeidelbergHeidelbergGermany
  2. 2.Institute of Applied MathematicsUniversity of HeidelbergHeidelbergGermany

Personalised recommendations