Advertisement

A Finite Element Method for the Even-Parity Radiative Transfer Equation Using the PN Approximation

  • Stephen Wright
  • Simon Arridge
  • Martin Schweiger

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yodh and B. Chance. Spectroscopy and imaging with diffusing light. Phys. Today, 48:38–40, 1995. CrossRefGoogle Scholar
  2. 2.
    J.C. Hebden, S.R. Arridge, and D.T. Delpy. Optical imaging in medicine: I. Experimental techniques. Phys. Med. Biol., 42:825–840, 1997. CrossRefGoogle Scholar
  3. 3.
    S.R. Arridge and J.C. Hebden. Optical imaging in medicine: II. Modelling and reconstruction. Phys. Med. Biol., 42:841–853, 1997. CrossRefGoogle Scholar
  4. 4.
    S.R. Arridge. Optical tomography in medical imaging. Inverse Problems, 15(2):R41–R93, 1999. zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D.A. Boas, D.H. Brooks, E.L. Miller, C.A. DiMarzio, M. Kilmer, R.J. Gaudette, and Q. Zhang. Imaging the body with diffuse optical tomography. IEEE Sig. Proc. Magazine, 18(6):57–75, 2001. CrossRefGoogle Scholar
  6. 6.
    M. Firbank, S.R. Arridge, M. Schweiger, and D.T. Delpy. An investigation of light transport through scattering bodies with non-scattering regions. Phys. Med. Biol., 41:767–783, 1996. CrossRefGoogle Scholar
  7. 7.
    O. Dorn. A transport-backtransport method for optical tomography. Inverse Problems, 14(5):1107–1130, 1998. zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A.H. Hielscher, R.E. Alcouffe, and R.L. Barbour. Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue. Phys. Med. Biol., 43:1285–1302, 1998. CrossRefGoogle Scholar
  9. 9.
    S.R. Arridge, H. Dehghani, M. Schweiger, and E. Okada. The finite element model for the propagation of light in scattering media: A direct method for domains with non-scattering regions. Med. Phys., 27(1):252–264, 2000. CrossRefGoogle Scholar
  10. 10.
    B. Davison. Neutron Transport Theory. Oxford University Press, 1957. Google Scholar
  11. 11.
    A.M. Weinberg and E.P. Wigner. The Physical Theory of Neutron Chain Reactors. University of Chicago Press, 1958. Google Scholar
  12. 12.
    M.C. Case and P.F. Zweifel. Linear Transport Theory. Addison-Wesley, New York, 1967. zbMATHGoogle Scholar
  13. 13.
    J.J. Duderstadt and W.R. Martin. Transport Theory. John Wiley & and Sons, 1979. Google Scholar
  14. 14.
    R.T. Ackroyd. Finite Element Methods for Particle Transport: Applications to Reactor and Radiation Physics. Research Studies Press Ltd., Taunton, 1997. Google Scholar
  15. 15.
    S. Chandrasekhar. Radiative Transfer. Oxford University Press, London, 1950. zbMATHGoogle Scholar
  16. 16.
    A. Ishimaru. Wave Propagation and Scattering in Random Media, volume 1. Academic, New York, 1978. Google Scholar
  17. 17.
    C.R.E. de Oliveira. An arbitrary geometry finite element method for multigroup neutron transport with anisotropic scattering. Prog. Nucl. Energy, 18:227–236, 1986. CrossRefGoogle Scholar
  18. 18.
    E.D. Aydin, C.R.E. de Oliveira, and A.J.H. Goddard. A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method. Med. Phys., 2(9):2013–2023, 2002. CrossRefGoogle Scholar
  19. 19.
    G.S. Abdoulaev and A.H. Hielscher. Three-dimensional optical tomography with the equation of radiative transfer. Journal of Electronic Imaging, 12(4):594–601, 2003. CrossRefGoogle Scholar
  20. 20.
    J. Heino, S.R. Arridge, J. Sikora, and E. Somersalo. Anisotropic effects in highly scattering media. Physical Review E, 68:Article number 31908, 2003. Google Scholar
  21. 21.
    V.I. Lebedev and A.L. Skorokhodov. Quadrature formulas of orders 41,47 and 53 for the sphere. Russian Acad. Sci. Dokl. Math., 45(3), 2002. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stephen Wright
    • 1
  • Simon Arridge
    • 1
  • Martin Schweiger
    • 1
  1. 1.Department of Computer ScienceUniversity College LondonLondon

Personalised recommendations