Advertisement

Shape Reconstruction for an Inverse Radiative Transfer Problem Arising in Medical Imaging

  • Oliver DornEmail author

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ar99]
    Arridge, S.R.: Optical tomography in medical imaging. Inverse Problems, 15 (2), R41–R93 (1999). zbMATHMathSciNetGoogle Scholar
  2. [CZ67]
    Case, K.M., Zweifel, P.F.: Linear Transport Theory. Plenum Press, New York (1967) zbMATHGoogle Scholar
  3. [Do98]
    Dorn, O.: A transport-backtransport method for optical tomography. Inverse Problems, 14, 1107–1130 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  4. [Do02]
    Dorn, O.: Shape reconstruction in scattering media with voids using a transport model and level sets. Canad. Appl. Math. Quart., 10 (2), 239–275 (2002). zbMATHMathSciNetGoogle Scholar
  5. [NW01]
    Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. Monographs on Mathematical Modeling and Computation 5, SIAM 2001. Google Scholar
  6. [OF97]
    Okada, E., Firbank, M., Schweiger, M., Arridge, S.R., Cope, M., Delpy, D.T.: Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Appl. Opt., 36 (1), 21–31 (1997) CrossRefGoogle Scholar
  7. [OS88]
    Osher, S., Sethian, J.: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 56, 12–49 (1988) CrossRefMathSciNetGoogle Scholar
  8. [OF03]
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003) zbMATHGoogle Scholar
  9. [RD00]
    Riley, J., Dehghani, H., Schweiger, M., Arridge, S.R., Ripoll, J., Nieto-Vesperinas, M.: 3D Optical Tomography in the Presence of Void Regions. Opt. Exp., 7 (13), 462 ff. (2000) CrossRefGoogle Scholar
  10. [Sa96]
    Santosa, F.: A Level-Set Approach for Inverse Problems Involving Obstacles. ESAIM: Control, Optimization and Calculus of Variations, 1, 17–33 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Se99]
    Sethian, J.A.: Level Set Methods and Fast Marching Methods (2nd ed), Cambridge University Press (1999) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad Carlos III de MadridSpain

Personalised recommendations