Advertisement

Multidimensional Radiation Hydrodynamics

  • Wolfgang Kalkofen

Summary

We describe a time-dependent, multidimensional radiation-hydrodynamic problem for the H line of Ca II in the solar chromosphere and propose an empirical approach using time-independent, one-dimensional equations. The purpose of the investigation is to determine the salient features of the structure of the underlying atmosphere and to decide between two fundamentally different models of the chromosphere. We discuss the case of the oscillations of the small-scale calcium bright points in the quiet chromosphere, whose intensities fluctuate intermittently with periods near the acoustic cutoff period of 3 min. The observed profile of the H line shows that a bright point is formed by an acoustic wave traveling upward in downward-streaming gas. The shape of the oscillating gas is approximately that of a cone oriented vertically, with the apex in the photosphere and an opening angle of ∼90°. The effects of multidimensional radiative transfer on the solution of the equations of radiation hydrodynamics are likely to be small compared with the effects on 3D wave propagation, and the influence on the emergent radiation field may be treated in a perturbation approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodo, G., Kalkofen, W., Massaglia, S. & Rossi, P. 2000, AA, 354, 296 Google Scholar
  2. Brandt, P.N., Rutten, R.J., Shine, R.A. & Trujillo Bueno, J. 1992, ASP Conf. Ser. 26, 161 Google Scholar
  3. Carlsson, M., Judge, P.G. & Wilhelm, K. 1997, ApJ, 486, L63 CrossRefGoogle Scholar
  4. Carlsson, M. & Stein, R.F. 1994, in Proc. Mini-Workshop, Chromospheric Dynamics, ed. M. Carlsson, Oslo University, 47 (CS) Google Scholar
  5. Carlsson, M. & Stein, R.F. 1995, ApJ, 440, L29 (CS) CrossRefGoogle Scholar
  6. Carlsson, M. & Stein, R.F. 1997, ApJ, 481, 500 CrossRefGoogle Scholar
  7. Fontenla, J.M., Avrett, E.H. & Loeser, R. 1993, ApJ, 406, 319 (FAL) CrossRefGoogle Scholar
  8. Grossmann-Doerth, U., Kneer, F. & v. Uexküll, M. 1974, Solar Phys., 37, 85 CrossRefGoogle Scholar
  9. Kalkofen, W., 2003, PASP Conf. Ser. 286, 385 Google Scholar
  10. Kariyappa, R. 1992, Thesis, Bangalore Univ., Bangalore, India Google Scholar
  11. Kariyappa, R. 2003, private communication Google Scholar
  12. Lamb, H. 1909, Proc. London Math. Soc., ser. 2, 7, 122 Google Scholar
  13. Lamb, H. 1932, Hydrodynamics, Cambridge Univ. Press Google Scholar
  14. Lites, B.W., Rutten, R.J. & Kalkofen, W. 1993, ApJ, 414, 345 CrossRefGoogle Scholar
  15. Rae, I.C. & Roberts, B. 1982, ApJ, 256, 761 CrossRefGoogle Scholar
  16. Sutmann, G., Musielak, Z.E. & Ulmschneider, P. 1998, AA, 340, 556 Google Scholar
  17. von Uexküll, M. & Kneer, F. 1995, AA, 294, 252 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Wolfgang Kalkofen
    • 1
    • 2
  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  2. 2.Kiepenheuer Institut für SonnenphysikFreiburgGermany

Personalised recommendations