Introduction: The Radiation Field and its Transfer Equation

  • Guido Kanschat
  • Erik Meinköhn
  • Rolf Rannacher
  • Rainer Wehrse


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.L. Adams. Discontinuous finite element transport solutions in thick diffusive problems. Nuclear Sci. Engng., 137(3):298–333, 2001. Google Scholar
  2. 2.
    M.L. Adams and E.W. Larsen. Fast iterative methods for discrete-ordinates particle transport calculations. Progress in Nuclear Energy, 40(1):3–159, 2002. CrossRefGoogle Scholar
  3. 3.
    M. Asadzadeh, P. Kumlin, and S. Larsson. The discrete ordinates method for the neutron transport equation in an infinite cylindrical domain. Math. Models Methods Appl. Sci., 2(3):317–338, 1992. zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    G. Bal. Radiative transfer equations with varying refractive index: a mathematical perspective. J. Opt. Soc. Amer. A. to appear. Google Scholar
  5. 5.
    M. Borysiewicz, J. Mika, and G. Spiga. Asymptotic analysis of the linear boltzmann equation. Math. Meth. Appl. Sci., 3:405–423, 1981. zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 32:199–259, 1982. zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology, volume 6. Springer, 2000. Google Scholar
  8. 8.
    J.J. Duderstadt and W.R. Martin. Transport Theory. Wiley, Chichester, 1979. zbMATHGoogle Scholar
  9. 9.
    C. Johnson and J. Pitkäranta. Convergence of a fully discrete scheme for two–dimensional neutron transport. SIAM J. Numer. Anal., 20(5):951–966, October 1983. zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    G. Kanschat. Disctontinuous Galerkin Methods for Viscous Flow. Deutscher Universitätsverlag, Wiesbaden, 2007. Google Scholar
  11. 11.
    G. Kanschat. Solution of radiative transfer problems with finite elements. In Numerical Methods in Multidimensional Radiative Transfer, page 49 Springer, 2008. Google Scholar
  12. 12.
    E.W. Larsen, J.E. Morel, and W.F. Miller Jr. Asymptotic solutions of numerical transport problems in optically thick, diffusive regions. Comp. Phys., 69:283–324, 1987. zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    P. LeSaint and P.-A. Raviart. On a finite element method for solving the neutron transport equation. In C. de Boor, editor, Mathematical aspects of finite elements in partial differential equations, pages 89–123, New York, 1974. Academic Press. Google Scholar
  14. 14.
    L. Mandel and E. Wolf. Optical Coherence and Quantum Optics. Cambridge University Press, 1995. Google Scholar
  15. 15.
    E. Meinköhn. A general-purpose finite element method for 3d radiative transfer problems. In Numerical Methods in Multidimensional Radiative Transfer, page 99 Springer, 2008. Google Scholar
  16. 16.
    M.I. Mishchenko. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Appl. Opt., 41:7114–7135, 2002. CrossRefGoogle Scholar
  17. 17.
    M.I. Mishchenko. Microphysical approach to polarized radiative transfer: extension to the case of an external observation point. Appl. Opt., 42:4963–4967, 2003. CrossRefGoogle Scholar
  18. 18.
    J. Oxenius. Kinetic Theory of Particles and Photons Theoretical Foundations of non-LTE Plasma Spectroscopy. Springer, 1986. Google Scholar
  19. 19.
    J. Pitkäranta. On the differential properties of solutions to fredholm equations with weakly singular kernels. J. Inst. Math. Appl., 24:109–119, 1979. zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    J. Pitkäranta. Estimates for the derivatives of solutions to weakly singular fredholm integral equations. SIAM J. Math. Anal., 11(6):952–968, November 1980. zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    J. Pitkäranta and L.R. Scott. Error estimates for the combined spatial and angular approximation of the transport equation for slab geometry. SIAM J. Numer. Anal., 20(5):922–950, 1983. zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    L. Ryzhik, G. Papanicolaou, and J.B. Keller. Transport equations for elastic and other waves in random media. Wave Motion, 24:327–270, 1996. zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    J. Tualle and E. Tinet. Derivation of the radiative transfer equation for scattering media with a spatially varying refractive index. Optics Comm., 228:33–38, 2003. CrossRefGoogle Scholar
  24. 24.
    S. Turek. An efficient solution technique for the radiative transfer equation. Imp. Comput. Sci. Engrg., 5:201–214, 1993. zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    M.C.W. van Rossum and T.M. Nieuwenhuizen. Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion. Rev. Mod. Phys., 71(1):313–371, 1999. CrossRefGoogle Scholar
  26. 26.
    W. von Waldenfels. Stochastic properties of the radiative transfer equation. In Numerical Methods in Multidimensional Radiative Transfer, page 19 Springer, 2008. Google Scholar
  27. 27.
    R. Wehrse and W. Kalkofen. Advances in radiative transfer. Astron. Astrophys. Rev., 13(1/2):3–29, 2006. CrossRefGoogle Scholar
  28. 28.
    E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:749–759, 1932. zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Guido Kanschat
    • 1
  • Erik Meinköhn
    • 2
    • 3
  • Rolf Rannacher
    • 2
  • Rainer Wehrse
    • 3
  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA
  2. 2.Institut f. Angewandte MathematikHeidelbergGermany
  3. 3.Institut f. Theoretische AstrophysikHeidelbergGermany

Personalised recommendations