A General Framework for Designing Approximation Schemes for Combinatorial Optimization Problems with Many Objectives Combined into One

  • Shashi Mittal
  • Andreas S. Schulz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5171)

Abstract

In this paper, we propose a general framework for designing fully polynomial time approximation schemes for combinatorial optimization problems, in which more than one objective function are combined into one using any norm. The main idea is to exploit the approximate Pareto-optimal frontier for multi-criteria optimization problems. Using this approach, we obtain an FPTAS for a novel resource allocation problem, for the problem of scheduling jobs on unrelated parallel machines, and for the Santa Claus problem, when the number of agents/machines is fixed, for any norm, including the l ∞ -norm. Moreover, either FPTAS can be implemented in a manner so that the space requirements are polynomial in all input parameters. We also give approximation algorithms and hardness results for the resource allocation problem when the number of agents is not fixed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laudon, J., Lenoski, D.: The SGI origin: A ccNUMA highly scalable server. In: Proceedings of the 24th International Symposium on Computer Architecture, Boulder, CO, pp. 241–251 (1997)Google Scholar
  2. 2.
    Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling nonidentical processors. Journal of the ACM 23, 317–327 (1976)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming 46, 259–271 (1990)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the ACM 34, 144–162 (1987)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Woeginger, G.J.: When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS Journal on Computing 12, 57–74 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Safer, H.M., Orlin, J.B., Dror, M.: Fully polynomial approximation in multi-criteria combinatorial optimization. Technical report, Operations Research Center, MIT (2004)Google Scholar
  7. 7.
    Safer, H.M., Orlin, J.B.: Fast approximation schemes for multi-criteria combinatorial optimzation. Technical report, Operations Research Center, MIT (1995)Google Scholar
  8. 8.
    Safer, H.M., Orlin, J.B.: Fast approximation schemes for multi-criteria flow, knapsack, and scheduling problems. Technical report, Operations Research Center, MIT (1995)Google Scholar
  9. 9.
    Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, Redondo Beach, CA, pp. 86–92 (2000)Google Scholar
  10. 10.
    Bansal, N., Sviridenko, M.: The Santa Claus problem. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, pp. 31–40 (2006)Google Scholar
  11. 11.
    Lipton, R.J., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations of indivisible goods. In: Proceedings of the 5th ACM Conference on Electronic Commerce, New York, NY, pp. 125–131 (2004)Google Scholar
  12. 12.
    Bezàkovà, I., Dani, V.: Allocating indivisible goods. ACM SIGecom Exchanges 5, 11–18 (2005)CrossRefGoogle Scholar
  13. 13.
    Azar, Y., Epstein, L., Richter, Y., Woeginger, G.J.: All-norm approximation algorithms. Journal of Algorithms 52, 120–133 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hansen, P.: Bicriterion path problems. In: Fandel, G., Gál, T. (eds.) Multiple Criteria Decision Making: Theory and Application. Lecture Notes in Economics and Mathematical Systems, vol. 177, pp. 109–127. Springer, Heidelberg (1980)Google Scholar
  15. 15.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)MATHGoogle Scholar
  16. 16.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman, New York (1979)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Shashi Mittal
    • 1
  • Andreas S. Schulz
    • 1
  1. 1.Operations Research Center and Sloan School of Management Massachusetts Institute of Technology Cambridge

Personalised recommendations