Skip to main content
  • 1051 Accesses

Definitions of the parastatistics algebras and known results on their Lie (super)algebraic structure are reviewed. The notion of super-Hopf algebra is discussed. The bosonisation technique for switching a Hopf algebra in a braided category H (H: a quasitriangular Hopf algebra) into an ordinary Hopf algebra is presented and it is applied in the case of the parabosonic algebra. A bosonisation-like construction is also introduced for the same algebra and the differences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Andruskiewitsch, P. Etingof, S. Gelaki, “Triangular Hopf algebras with the Chevalley property”, Michigan Math. J., 49, (2001), p. 277

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Daskaloyannis, K. Kanakoglou, I. Tsohantjis, “Hopf algerbaic structure of the parabosonic and parafermionic algebras and paraparticle generalization of the Jordan—Schwinger map”, J. Math. Phys., 41, 2, (2000), p. 652

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Fischman, “Schur's double centralizer theorem: A Hopf algebra approach”, J. Algebra, 157, (1993), p. 331

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Fischman, S. Montgomery, “A Schur double centralizer theorem for cotriangular Hopf algebras and generalized Lie algebras”, J. Algebra, 168, (1994), p. 594

    Article  MATH  MathSciNet  Google Scholar 

  5. O. W. Greenberg, A.M.L. Messiah, “Selection rules for parafields and the absence of para-particles in nature”, Phys. Rev., 138, 5B, (1965), p. 1155

    Article  MathSciNet  Google Scholar 

  6. H. S. Green, “A generalized method of field quantization”, Phys. Rev., 90, 2, (1953), p. 270

    Article  MATH  Google Scholar 

  7. V. G. Kac, “A sketch of Lie superalgebra theory”, Comm. Math. Phys., 53, (1977), p. 31

    Article  MATH  MathSciNet  Google Scholar 

  8. V. G. Kac, “Lie Superalgebras”, Adv. Math., 26, (1977), p. 8

    Article  MATH  Google Scholar 

  9. S. Kamefuchi, Y. Takahashi, “A generalisation of field quantization and statistics”, Nucl. Phys., 36, (1962), p. 177

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Majid, “Cross products by braided groups and bosonisation”, J. Algebra, 163, (1994), p. 165

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Majid, “Foundations of Quantum Group Theory”, Cambridge University Press, Cambridge, 1995

    MATH  Google Scholar 

  12. S. Majid, “A quantum groups primer”, London Mathematical Society, Lecture Note Series, 292, Cambridge University Press, Cambridge, 2002

    Google Scholar 

  13. R. K. Molnar, “Semi-direct products of Hopf Algebras”, J. Algebra, 47, (1977), p. 29

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Montgomery, “Hopf algebras and their actions on rings”, CBMS, Regional Conference Series in Mathematics, 82, AMS-NSF, 1993

    Google Scholar 

  15. Y. Ohnuki, S. Kamefuchi, “Quantum field theory and parastatistics”, University of Tokyo press, Tokyo, 1982

    MATH  Google Scholar 

  16. T. D. Palev, “Quantization of U script> q (so(2n + 1)) with Deformed Parafermi Operators”, Lett. Math. Phys., 31, (1994), p. 151

    Article  MATH  MathSciNet  Google Scholar 

  17. T. D. Palev, “Quantization of U script> q (osp(1,2n)) with Deformed Parabose Operators”, J. Phys. A: Math. Gen., 26, (1993), p. L1111

    Article  MathSciNet  Google Scholar 

  18. T. D. Palev, “A Lie superalgebraic interpretation of the parabose statistics”, J. Math. Phys., 21, 4, (1980), p. 797

    Article  MATH  MathSciNet  Google Scholar 

  19. T. D. Palev, “The quantum superalgebra U script> q (osp(1/2n)): deformed parabose operators and root of unity representations”, J. Phys. A:Math. Gen., 28, (1995), p. 2605

    Article  MATH  MathSciNet  Google Scholar 

  20. D. E. Radford, “The structure of Hopf algebras with a projection”, J. Algebra, 92, (1985), p. 322

    Article  MATH  MathSciNet  Google Scholar 

  21. C. Ryan, E. C. G. Sudarshan, “Representations of parafermi rings”, Nucl. Phys. B, 47, (1963), p. 207

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Kanakoglou or C. Daskaloyannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kanakoglou, K., Daskaloyannis, C. (2009). Bosonisation and Parastatistics. In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A. (eds) Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85332-9_18

Download citation

Publish with us

Policies and ethics