Skip to main content

Plagiarism Detection Based on Singular Value Decomposition

  • Conference paper
Advances in Natural Language Processing (GoTAL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5221))

Included in the following conference series:


Plagiarism is a widely spread problem that is the main focus of interest these days. In this paper, we propose a new method solving associations of phrases contained in text documents. This method, called SVDPlag, employs Singular Value Decomposition (SVD) for this purpose. Further, we discuss other approaches to plagiarism detection and compare them with our method. To examine the efficiency of plagiarism detection methods, we used an experimental corpus of 950 text documents about politics, which were created from the standard CTK corpus. The experiments indicate that our approach significantly improves the accuracy of plagiarism detection and overcomes other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Bao, J., Malcolm, J.: Text Similarity in Academic Conference Papers. In: Proceedings of the 2nd International Plagiarism Conference. The Sage, Gateshead (2006)

    Google Scholar 

  2. Berry, M., Dumais, S., O’Brein, G.: Using Linear Algebra for Intelligent Information Retrieval. SIAM Review 37(4), 573–595 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brin, S., Davis, J., Garcia-Molina, H.: Copy Detection Mechanisms for Digital Documents. In: Proceedings of the ACM SIGMOD Annual Conference, San Jose, Canada (1995)

    Google Scholar 

  4. Clough, P.: Plagiarism in natural and programming languages: An overview of current tools and technologies. In: Internal Report CS-00-05, Department of Computer Science, University of Sheffield (2000)

    Google Scholar 

  5. Clough, P.: Old and new challenges in automatic plagiarism detection. In: Plagiarism Advisory Service, vol. 10, Department of Computer Science, University of Sheffield (2003)

    Google Scholar 

  6. Hoad, T., Zobel, J.: Methods for Identifying Versioned and Plagiarised Documents. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, pp. 825–826 (2007) ISBN 978-1-59593-597-7

    Google Scholar 

  7. Kang, N., Gelbukh, A., Han, S.: PPChecker: Plagiarism Pattern Checker in Document Copy Detection. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 661–667. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Lancaster, T., Culwin, F.: Classification of Plagiarism Detection Engines. E-journal ITALICS 4(2) (2005) ISSN 1473-7507

    Google Scholar 

  9. Landauer, T., Foltz, P., Laham, D.: An Introduction to Latent Semantic Analysis. Discourse Processes 25, 259–284 (1998)

    Article  Google Scholar 

  10. Lane, P., Lyon, C., Malcolm, J.: Demonstration of the Ferret Plagiarism Detector. In: Proceedings of the 2nd International Plagiarism Conference, Newcastle (2006)

    Google Scholar 

  11. Lyon, P., Malcolm, J., Dickerson, B.: Detecting short passages of similar text in large document. In: Proceedings of Conference on Empirical Methods and Natural Language Processing, Pittsburgh, USA, pp. 118–125 (2001)

    Google Scholar 

  12. Manning, C., Schutze, H.: Foundation of Statistical Natural Language Processing. MIT Press, Massachusetts Institute of Technology, Cambridge (1999)

    MATH  Google Scholar 

  13. Maurer, H., Kappe, F., Zaka, B.: Plagiarism – A Survey. Journal of Universal Computer Science 12(8), 1050–1084 (2006)

    Google Scholar 

  14. Runeson, P., Alexanderson, M., Nyholm, O.: Detection of Duplicate Defect Reports Using Natural Language Processing. In: Proceedings of the IEEE 29th International Conference on Software Engineering, pp. 499–510 (2007)

    Google Scholar 

  15. Salton, G., Buckley, C.: Term-Weighting Approaches in Automatic Retrieval. Journal of Information Processing and Management 24(5), 513–523 (1988)

    Article  Google Scholar 

  16. Shivakumar, N., Garcia-Molina, H.: SCAM: A copy detection mechanism for digital documents. In: Proceedings of the 2nd International Conference in Theory and Practice of Digital Libraries, Austin, USA (1995)

    Google Scholar 

  17. Shivakumar, N., Garcia-Molina, H.: Building a Scalable and Accurate Copy Detection Mechanism. In: Proceedings of the 1st ACM DL International Conference, Besheda (1996)

    Google Scholar 

  18. Toman, M., Tesar, R., Jezek, K.: Influence of Word Normalization on Text Classification. In: Proceedings of the 1st International Conference on Multidisciplinary Information Sciences & Technologies, Merida, Spain, vol. 2, pp. 354–358 (2006) ISBN 84-611-3105-3

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ceska, Z. (2008). Plagiarism Detection Based on Singular Value Decomposition. In: Nordström, B., Ranta, A. (eds) Advances in Natural Language Processing. GoTAL 2008. Lecture Notes in Computer Science(), vol 5221. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85286-5

  • Online ISBN: 978-3-540-85287-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics