Positional Strategies for Higher-Order Pushdown Parity Games

  • Arnaud Carayol
  • Michaela Slaats
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5162)

Abstract

Higher-order pushdown systems generalize pushdown systems by using higher-order stacks, which are nested stacks of stacks. In this article, we consider parity games defined by higher-order pushdown systems and provide a k-Exptime algorithm to compute finite representations of positional winning strategies for both players for games defined by level-k higher-order pushdown automata. Our result is based on automata theoretic techniques exploiting the tree structure corresponding to higher-order stacks and their associated operations.

Keywords

Boolean Algebra Partial Function Winning Strategy Tree Automaton Positional Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouajjani, A., Meyer, A.: Symbolic Reachability Analysis of Higher-Order Context-Free Processes. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 135–147. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Büchi, J.: Regular canonical systems. Arch. Math. Logik Grundlag. 6, 91–111 (1964)MATHCrossRefGoogle Scholar
  3. 3.
    Cachat, T.: Symbolic Strategy Synthesis for Games on Pushdown Graphs. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 704–715. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Cachat, T.: Higher-order-pushdown automata, the Caucal hierarchy of graphs and parity games. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 556–569. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Cachat, T., Walukiewicz, I.: The complexity of games on higher order pushdown automata. In: Electronic version (May 2007)Google Scholar
  6. 6.
    Carayol, A.: Regular Sets of Higher-Order Pushdown Stacks. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 168–179. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Carayol, A., Hague, M., Meyer, A., Ong, C.-H.L., Serre, O.: Winning regions of higher-order pushdown games. In: Proc. LICS 2008 (2008)Google Scholar
  8. 8.
    Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Caucal, D.: On Infinite Terms Having a Decidable Monadic Theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420. Springer, Heidelberg (2002)Google Scholar
  10. 10.
    Fratani, S.: Automates á piles de piles.. de piles. PhD thesis, Universit Bordeaux 1 (2005)Google Scholar
  11. 11.
    Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-Order Pushdown Trees Are Easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Serre, O.: Note on winning positions on pushdown games with omega-regular conditions. IPL 85(6), 285–291 (2003)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Thomas, W.: Infinite Games and Verification. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Thomas, W.: Constructing Infinite Graphs with a Decidable MSO-Theory. In: Rovan, B., Vojtas, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 113–124. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Vardi, M.Y.: Reasoning about the Past with Two-Way Automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)Google Scholar
  18. 18.
    Walukiewicz, I.: Pushdown processes: Games and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Walukiewicz, I.: A landscape with games in the background. In: Proc. LICS 2004, pp. 356–366. IEE (2004)Google Scholar
  20. 20.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. TCS 200, 135–183 (1998)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Arnaud Carayol
    • 1
  • Michaela Slaats
    • 2
  1. 1.IGM–LabInfoUniversité Paris-Est & CNRS 
  2. 2.RWTH AachenAachenGermany

Personalised recommendations