Advertisement

Flip Algorithm for Segment Triangulations

  • Mathieu Brévilliers
  • Nicolas Chevallier
  • Dominique Schmitt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5162)

Abstract

Given a set S of disjoint line segments in the plane, which we call sites, a segment triangulation of S is a partition of the convex hull of S into sites, edges, and faces. The set of faces is a maximal set of disjoint triangles such that the vertices of each triangle are on three distinct sites. The segment Delaunay triangulation of S is the segment triangulation of S whose faces are inscribable in circles whose interiors do not intersect S. It is dual to the segment Voronoi diagram. The aim of this paper is to show that any given segment triangulation can be transformed by a finite sequence of local improvements in a segment triangulation that has the same topology as the segment Delaunay triangulation. The main difference with the classical flip algorithm for point set triangulations is that local improvements have to be computed on non convex regions. We overcome this difficulty by using locally convex functions.

Keywords

Convex Hull Voronoi Diagram Delaunay Triangulation Local Improvement Polyhedral Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichholzer, O., Aurenhammer, F., Hackl, T.: Pre-triangulations and liftable complexes. In: Proc. 22th Annu. ACM Sympos. Comput. Geom., pp. 282–291 (2006)Google Scholar
  2. 2.
    Aichholzer, O., Aurenhammer, F., Krasser, H., Brass, P.: Pseudotriangulations from surfaces and a novel type of edge flip. SIAM J. Comput. 32(6), 1621–1653 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Aurenhammer, F., Krasser, H.: Pseudo-simplicial complexes from maximal locally convex functions. Disc. Comput. Geom. 35(2), 201–221 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brévilliers, M., Chevallier, N., Schmit, D.: Triangulations of Line Segment Sets in the Plane. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 388–399. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Brönnimann, H., Kettner, L., Pocchiola, M., Snoeyink, J.: Counting and enumerating pointed pseudotriangulations with the greedy flip algorithm. SIAM J. Comput. 36(3), 721–739 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bronsted, A.: An Introduction to Convex Polytopes. Graduate Texts in Mathematics. Springer, New York (1983)Google Scholar
  7. 7.
    Cheng, S., Dey, T.K.: Delaunay edge flips in dense surface triangulations. In: Proceedings of the 24th European Workshop on Computational Geometry, pp. 1–4 (2008)Google Scholar
  8. 8.
    Chew, L.P., Kedem, K.: Placing the largest similar copy of a convex polygon among polygonal obstacles. In: Proc. 5th Annu. ACM Sympos. Comput. Geom., pp. 167–174 (1989)Google Scholar
  9. 9.
    Edelsbrunner, H.: Triangulations and meshes in computational geometry. In: Acta Numerica, pp. 133–213 (2000)Google Scholar
  10. 10.
    Edelsbrunner, H., Shah, N.R.: Incremental topological flipping works for regular triangulations. Algorithmica 15(3), 223–241 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of delaunay and voronoi diagrams. Algorithmica 7(4), 381–413 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hurtado, F., Noy, M.: Graph of triangulations of a convex polygon and tree of triangulations. Comput. Geom. Theory Appl. 13(3), 179–188 (1999)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Joe, B.: Three-dimensional triangulations from local transformations. SIAM J. Sci. Stat. Comput. 10(4), 718–741 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Joe, B.: Construction of three-dimensional delaunay triangulations from local transformations. Comp. Aided Geom. Design. 8(2), 123–142 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Karavelas, M.I.: A robust and efficient implementation for the segment Voronoi diagram. In: Proceedings of the International Symposium on Voronoi Diagrams in Science and Engineering, pp. 51–62 (2004)Google Scholar
  16. 16.
    Lawson, C.L.: Software for C 1 surface interpolation. In: Rice, J.R. (ed.) Math. Software III, pp. 161–194. Academic Press, New York, NY (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mathieu Brévilliers
    • 1
  • Nicolas Chevallier
    • 1
  • Dominique Schmitt
    • 1
  1. 1.Laboratoire LMIAUniversité de Haute-AlsaceMulhouse CedexFrance

Personalised recommendations