Skip to main content

Deterministic Encryption: Definitional Equivalences and Constructions without Random Oracles

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 5157)

Abstract

We strengthen the foundations of deterministic public-key encryption via definitional equivalences and standard-model constructs based on general assumptions. Specifically we consider seven notions of privacy for deterministic encryption, including six forms of semantic security and an indistinguishability notion, and show them all equivalent. We then present a deterministic scheme for the secure encryption of uniformly and independently distributed messages based solely on the existence of trapdoor one-way permutations. We show a generalization of the construction that allows secure deterministic encryption of independent high-entropy messages. Finally we show relations between deterministic and standard (randomized) encryption.

Keywords

  • Encryption Scheme
  • Random Oracle
  • Message Space
  • Deterministic Scheme
  • Semantic Security

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bellare, M.: The Goldreich-Levin Theorem (manuscript), http://www-cse.ucsd.edu/users/mihir/papers/gl.pdf

  2. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  4. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic Encryption: Definitional Equivalences and Constructions without Random Oracles. Full version of this paper. IACR ePrint archive (2008) http://eprint.iacr.org/

  5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Conference on Computer and Communications Security – CCS 1993, pp. 62–73. ACM, New York (1993)

    CrossRef  Google Scholar 

  6. Bellare, M., Rogaway, P.: Robust computational secret sharing and a unified account of classical secret-sharing goals. In: Conference on Computer and Communications Security – CCS 2007, pp. 172–184. ACM, New York (2007)

    Google Scholar 

  7. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  8. Bellare, M., Sahai, A.: Non-malleable encryption: Equivalence between two notions, and an indistinguishability-based characterization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999)

    Google Scholar 

  9. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. SIAM Journal on Computing 15, 364–383 (1986)

    MATH  CrossRef  MathSciNet  Google Scholar 

  10. Blum, M., Goldwasser, S.: An efficient probabilistic public-key encryption scheme which hides all partial information. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 289–302. Springer, Heidelberg (1984)

    CrossRef  Google Scholar 

  11. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudorandom bits. SIAM Journal on Computing 13, 850–864 (1984)

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryption, and efficient constructions without random oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

    Google Scholar 

  13. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

    Google Scholar 

  14. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer, Heidelberg (1997)

    Google Scholar 

  15. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash functions (Preliminary version). In: Symposium on the Theory of Computation – STOC 1998, pp. 131–141 (1998)

    Google Scholar 

  16. Damgaard, I., Hofheinz, D., Kiltz, E., Thorbek, R.: Public-key encryption with non-interactive opening. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 239–255. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  17. Desrosiers, S.: Entropic security in quantum cryptography. arXiv e-Print quant-ph/0703046 (2007), http://arxiv.org/abs/quant-ph/0703046

  18. Desrosiers, S., Dupuis, F.: Quantum entropic security and approximate quantum encryption. arXiv e-Print quant-ph/0707.0691 (2007), http://arxiv.org/abs/0707.0691

  19. Dodis, Y., Smith, A.: Entropic security and the encryption of high entropy messages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 556–577. Springer, Heidelberg (2005)

    Google Scholar 

  20. El Gamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    CrossRef  Google Scholar 

  21. Goldreich, O.: A uniform complexity treatment of encryption and zero-knowledge. Journal of Cryptology 6, 21–53 (1993)

    MATH  CrossRef  MathSciNet  Google Scholar 

  22. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Symposium on the Theory of Computation – STOC 1989, pp. 25–32. ACM, New York (1989)

    Google Scholar 

  23. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Systems Sciences 28(2), 412–426 (1984)

    CrossRef  MathSciNet  Google Scholar 

  24. Micali, S., Rackoff, C., Sloan, R.: The notion of security for probabilistic cryptosystems. SIAM Journal on Computing 17(2), 412–426 (1988)

    MATH  CrossRef  MathSciNet  Google Scholar 

  25. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Symposium on the Theory of Computing – STOC 2008, pp. 187–196. ACM, New York (2008)

    Google Scholar 

  26. Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 133–148. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  27. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Symposium on Security and Privacy, pp. 44–55. IEEE, Los Alamitos (2000)

    Google Scholar 

  28. Yao, A.: Theory and applications of trapdoor functions. In: Symposium on Foundations of Computer Science – FOCS 1982, pp. 80–91. IEEE, Los Alamitos (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T. (2008). Deterministic Encryption: Definitional Equivalences and Constructions without Random Oracles. In: Wagner, D. (eds) Advances in Cryptology – CRYPTO 2008. CRYPTO 2008. Lecture Notes in Computer Science, vol 5157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85174-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85174-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85173-8

  • Online ISBN: 978-3-540-85174-5

  • eBook Packages: Computer ScienceComputer Science (R0)