Skip to main content

Molecular dynamics of shock waves in dense fluids

  • Conference paper
  • 2345 Accesses

Summary

The shock structure problem is one of the classical problems of fluid mechanics and at least for non–reacting dilute gases it has been considered essentially solved. Here we present a few recent findings, to show that this is not the case. There are still new physical effects to be discovered provided that the numerical technique is general enough to not rule them out a priori.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. J. Alder and T. E. Wainwright. Phase transition for a hard sphere system. Journal of Chemical Physics, 27: 1208–1209, 1957.

    Article  Google Scholar 

  2. W. G. Hoover. Structure of shock wave front in a liquid. Physical Review Letters, 42 (23): 1531–1534, 1979.

    Article  Google Scholar 

  3. B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub. Shock–wave structure via non–equilibrium molecular–dynamics and Navier–Stokes continuum mechanics. Physical Review A, 22 (6):2798–2808, 1980.

    Article  Google Scholar 

  4. D. H. Tsai and S. F. Trevino. Thermal relaxation in a dense liquid under shock compression. Physical Review A, 24 (5): 2743–2757, 1981.

    Article  Google Scholar 

  5. E. Salomons and M. Mareschal. Usefulness of the Burnett description of strong shock waves. Physical Review Letters, 69 (2): 269–272, 1992.

    Article  Google Scholar 

  6. O. Kum, W. G. Hoover, and C. G. Hoover. Temperature maxima in stable two–dimensional shock waves. Physical Review E, 56 (1): 462–465, 1997.

    Article  Google Scholar 

  7. S. M. Yen. Temperature overshoot in shock waves. Physics of Fluids, 9 (7): 1417–1418, 1966.

    Article  Google Scholar 

  8. A. K. Macpherson. Formation of shock waves in a dense gas using a molecular–dynamics type technique. Journal of Fluid Mechanics, 45: 601–621, 1971.

    Article  MATH  Google Scholar 

  9. J. Horowitz, M. Woo, and I. Greber. Molecular dynamics simulation of a piston–driven shock wave. Physics of Fluids (Gallery of Fluid Motion), 7 (9): S6, 1995.

    Google Scholar 

  10. M. Woo and I. Greber. Molecular dynamics simulation of piston-driven shock wave in hard sphere gas. AIAA Journal, 37 (2): 215–221, 1999.

    Article  Google Scholar 

  11. T. Tokumasu and Y. Matsumoto. Dynamic molecular collision (DMC) model for rarefied gas flow simulations by the DSMC method. Physics of Fluids, 11 (7): 1907–1920, 1999.

    Article  Google Scholar 

  12. S. Schlamp and B. C. Hathorn. Molecular alignment in a shock wave. Physics of Fluids, 18 (9): 096101, 2006.

    Article  Google Scholar 

  13. S. Schlamp and B. C. Hathorn. Higher moments of the velocity distribution function in dense–gas shocks. Journal of Computational Physics, 223 (1): 305–315, 2007.

    Article  MATH  Google Scholar 

  14. S. Schlamp and B. C. Hathorn. Three–dimensional structure of a plane shock wave. submitted to Physics of Fluids, 2007.

    Google Scholar 

  15. S. Schlamp and B. C. Hathorn. Incomplete molecular chaos within dense–fluid shock waves. submitted to Physical Review E, 2007.

    Google Scholar 

  16. S. Schlamp. Shock Wave Structure in Dense Argon and Nitrogen – Molecular Dynamics Simulations of Moving Shock Waves. Habilitation thesis, ETH Zurich, Institute of Fluid Dynamics, Sonneggstr. 3, 8092 Zurich, Switzerland, 2007.

    Google Scholar 

  17. C. Cercignani. The Boltzmann Equation and its Applications. Springer–Verlag, New York, 1988.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schlamp, S., Hathorn, B. (2009). Molecular dynamics of shock waves in dense fluids. In: Hannemann, K., Seiler, F. (eds) Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85168-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85168-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85167-7

  • Online ISBN: 978-3-540-85168-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics