Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 158))

Summary

In path planning, it is often desired to compute a path that is shortest possible while maintaining a specified amount of clearance from obstacles. This chapter utilizes the Voronoi diagram to develop a simple and efficient solution to compute such a path. By setting the clearance to zero, we obtain a very good approximation of the shortest path. We compare performance of our algorithm to other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: ACM-SIGMOD Int. Conf. Management of Data (SIGMOD 1998), pp. 94–105 (1998)

    Google Scholar 

  2. Amato, N., Wu, Y.: A randomized roadmap method for path and manipulation planning. IEEE Int. Conf. on Robotics and Automation, 113–120 (1996)

    Google Scholar 

  3. Bhattacharya, P., Gavrilova, M.L.: CRYSTAL - A new density-based fast and efficient clustering algorithm. In: 3rd International Symposium on Voronoi Diagrams in Science and Engineering, pp. 102–111 (2006)

    Google Scholar 

  4. Bhattacharya, P., Gavrilova, M.L.: Path planning with the required minimum clearance using the Voronoi diagram methodology. Special issue on Computational Geometry in Path Planning. IEEE RAM (2008)

    Google Scholar 

  5. Chang, H., Li, T.Y.: Assembly maintainability study with motion planning. In: IEEE International Conference on Robotics and Automation, pp. 1012–1019 (1995)

    Google Scholar 

  6. Chen, D.Z., Szczerba, R.J., Uhran, Jr., J.J.: A Framed-Quadtree Approach for Determining Euclidean Shortest Paths in a 2-D Environment. IEEE Transactions on robotics and automation 13(5) (1997)

    Google Scholar 

  7. Foss, A., Zaïne, O.R.: TURN* - Unsupervised Clustering of Spatial Data. In: ACM-SIKDD Intl. Conf. on Knowledge Discovery and Data Mining (submitted, 2002)

    Google Scholar 

  8. Fred, A.L.N., Leitao, J.M.N.: A minimum code length technique for clustering of syntactic patterns. In: International Conference on Pattern Recognition, pp. 680–684 (1996)

    Google Scholar 

  9. Gavrilova, M.L., Rokne, J.G.: Collision Detection Optimization in a Multi-Particle System. Int. J. Comput. Geometry Appl. 13(4), 279–301 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Geraerts, R., Overmars, M.: Clearance Based Path Optimization for Motion Planning. In: International Conference on Robotics and Automation (2004)

    Google Scholar 

  11. Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility graphs. SIAM J. Computing 20 (1991)

    Google Scholar 

  12. Gold, C.: Crust and anti-crust: a one-step boundary and skeleton extraction algorithm. In: 15th ACM Symposium on Computational Geometry, pp. 189–196 (1999)

    Google Scholar 

  13. Gold, C.M., Remmele, P.R.: Voronoi Methods in GIS. LNCS, vol. 1340, pp: 21–35 (1996)

    Google Scholar 

  14. Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7, 381–413 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dong-Hoon, Y., Suk-Kyo, H.: A roadmap construction algorithm for mobile robot path planning using skeleton maps. Advanced Robotics 21(1-2), 51–63 (2007)

    Google Scholar 

  16. Hussien, B.: Robot Path Planning and Obstacle Avoidance by Means of Potential Function Method. Ph.D Dissertation, University of Missouri-Columbia (1989)

    Google Scholar 

  17. Kambhampati, S., Davis, L.S.: Multiresolution path planning for mobile robots. IEEE journal of robotics and automation 2(33), 135–145 (1986)

    Google Scholar 

  18. Kang, I., Kim, T., Li, K.: A spatial data mining method by Delaunay triangulation. In: 5th ACM international workshop on Advances in geographic information systems, pp. 35–39 (1997)

    Google Scholar 

  19. Kavraki, L.E., Latombe, J.C.: Probabilistic Roadmaps for Robot Path Planning. John Wiley & Sons Ltd., Chichester (1997)

    Google Scholar 

  20. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5, 90–98 (1986)

    Google Scholar 

  21. Koren, Y., Borenstein, J.: Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. In: IEEE Conference on Robotics and Automation, pp. 1398–1404 (1991)

    Google Scholar 

  22. Kuffner, J.J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion planning for humanoid robots under obstacle and dynamic balance constraints. In: IEEE International Conference on Robotics and Automation, pp. 692–698 (2001)

    Google Scholar 

  23. Kuffner, J.J., Latombe, J.-C.: Interactive manipulation planning for animated characters. In: IEEE International Conference on Robotics and Automation, pp. 417–418 (2000)

    Google Scholar 

  24. Kurita, T.: An efficient agglomerative clustering algorithm using a heap. Pattern Recognition 24(3), 205–209 (1991)

    Article  MathSciNet  Google Scholar 

  25. Lanthier, M., Maheshwari, A., Sack, J.-R.: Approximating weighted shortest paths on polyhedral surfaces. In: 13th Annual Symposium on Computational Geometry (SCG 1997), pp. 264–273 (1997)

    Google Scholar 

  26. Lee, D.T.: Proximity and reachability in the plane, Report R-831, Dept. of Electrical Engineering, University of Illinois at Urbana-Champaign (1978)

    Google Scholar 

  27. Li, S., Su, Y.: Optimal transit path finding algorithm based on geographic information system. Intelligent Transportation Systems 2, 1670–1673 (2003)

    Google Scholar 

  28. Maritime Activity and Risk Investigation Network (2006), http://www.marin-research.ca/

  29. Masehian, E., Amin-Naseri, M.R.: A voronoi diagram-visibility graph-potential field compound algorithm for robot path planning. Journal of Robotic Systems 21(6) (2004)

    Google Scholar 

  30. Mitchell, J.S.B., Papadimitriou, C.H.: The weighted region problem: finding shortest paths through a weighted planar subdivision. Journal of the ACM 38(1), 18–73 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mostafavi, M.A., Gold, C., Dakowicz, M.: Delete and insert operations in Voronoi/Delaunay methods and applications. Computers & Geosciences 29, 523–530 (2003)

    Article  Google Scholar 

  32. Pizarro, D., Campusano, L.E., Roger, G.C., Patrizzio, V., Nancy, H.-K., Ilona, K.S.: Clustering of 3D Spatial Points Using Maximum Likelihood Estimator over Voronoi Tessellations: Study of the Galaxy Distribution in Redshift Space. In: 3rd International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2006), pp. 112–121 (2006)

    Google Scholar 

  33. Ramella, M., Boschin, W., Fadda, D., Nonino, M.: Finding galaxy clusters using Voronoi tessellations. Astronomy and Astrophysics 368, 776–786 (2001)

    Article  Google Scholar 

  34. Simeon, T., Chatila, R., Laumond, J.-P.: Computer aided motion for logistics in nuclear plants. In: International symposium on artificial intelligence, robotics and human centered technology for nuclear applications, pp. 46–53 (2002)

    Google Scholar 

  35. Thomas, S., Song, G., Amato, N.M.: Protein folding by motion planning. Physical biology 2, 148–155 (2005)

    Article  Google Scholar 

  36. Vladimir, E.-C., Michael, E.H.: Robust Clustering of Large Geo-referenced Data Sets. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 327–337. Springer, Heidelberg (1999)

    Google Scholar 

  37. Warren, C.W.: Global Path Planning Using Artificial Potential Fields. In: IEEE Conference on Robotics and Automation, pp. 316–321 (1989)

    Google Scholar 

  38. Wein, R., Van den Berg, J.P., Halperin, D.: The Visibility-Voronoi complex and its applications. In: 21st Annual Symposium on Computational geometry, pp. 63–72 (2005)

    Google Scholar 

  39. Welzl, E.: Constructing the visibility graph for n line segments in O(n 2) time. Information Processing Letters 20, 167–171 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  40. Xu, Y., Olman, V., Xu, D.: Minimum Spanning Trees for Gene Expression Data Clustering. Genome Inform. 12, 24–33 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhattacharya, P., Gavrilova, M.L. (2009). Density-Based Clustering Based on Topological Properties of the Data Set. In: Gavrilova, M.L. (eds) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in Computational Intelligence, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85126-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85126-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85125-7

  • Online ISBN: 978-3-540-85126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics