Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 158))

Summary

The topology among particles frequently plays a core role in many applications. One of the emerging application areas of particle systems is the analysis of molecular structures since the morphology of a molecule has been recognized as one of the most important factors which determines the functions of the molecule.

To understand the morphology of molecules, various computational methodologies have been extensively investigated like the Voronoi diagram of the centers of atoms in the molecule, the power diagram for the weighted points where the weights are related to the radii of the atoms, etc. For a more improved efficiency, constructs like an α-shape or a weighted α-shape have been developed and used frequently in a systematic analysis of the morphology of molecules. However, it has been recently shown that α-shapes and weighted α-shapes lack the fidelity to Euclidean distance for molecules with polysized spherical atoms.

We will present the theory, as well as the corresponding algorithms, of β-shape and β-complex in R 3 which reflects the size difference among atoms in their full Euclidean metric. We show that these new concepts are more natural for most applications and therefore will have a significant impact on applications based on particles, in particular in molecular biology. The theory will be equivalently useful for other application areas such as computer graphics, geometric modeling, chemistry, physics, material science, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernal, J.D., Finney, J.L.: Random close-packed hard-sphere model ii. Geometry of random packing of hard spheres. Discussions of the Faraday Society 43, 62–69 (1967)

    Article  Google Scholar 

  2. Richards, F.M.: The interpretation of protein structures: Total volume, group volume distributions and packing density. Journal of Molecular Biology 82, 1–14 (1974)

    Article  Google Scholar 

  3. Zimmer, R., Wöhler, M., Thiele, R.: New scoring schemes for protein fold recognition based on Voronoi contacts. Bioinformatics 14(3), 295–308 (1998)

    Article  Google Scholar 

  4. Angelov, B., Sadoc, J.F., Jullien, R., Soyer, A., Mornon, J.-P., Chomilier, J.: Nonatomic solvent-driven Voronoi tessellation of proteins: An open tool to analyze protein folds. Proteins: Structure, Function, and Genetics 49(4), 446–456 (2002)

    Article  Google Scholar 

  5. Tsai, J., Taylor, R., Chothia, C., Gerstein, M.: The packing density in proteins: Standard radii and volumes. J. Mol. Biol. 290, 253–266 (1999)

    Article  Google Scholar 

  6. Pontius, J., Richelle, J., Wodak, S.J.: Deviations from standard atomic volumes as a quality measure for protein crystal structures. Journal of Molecular Biology 264(1), 121–136 (1996)

    Article  Google Scholar 

  7. Dupuis, F., Sadoc, J.-F., Mornon, J.P.: Protein secondary structure assignment through Voronoi tessellation. Proteins: Structure, Function, and Bioinformatics 55, 519–528 (2004)

    Article  Google Scholar 

  8. Gellatly, B.J., Finney, J.L.: Calculation of protein volumes: An alternative to the Voronoi procedure. Journal of Molecular Biology 161(2), 305–322 (1982)

    Article  Google Scholar 

  9. Aurenhammer, F.: Power diagrams: Properties, algorithms and applications. SIAM Journal on Computing 16, 78–96 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wernisch, L., Hunting, M., Wodak, S.J.: Identification of structural domains in proteins by a graph heuristic. PROTEINS: Structure, Function, and Genetics 35, 338–352 (1999)

    Article  Google Scholar 

  11. McConkey, B.J., Sobolev, V., Edelman, M.: Quantification of protein surfaces, volumes and atom-atom contacts using a constrained Voronoi procedure. Bioinformatics 18(10), 1365–1373 (2002)

    Article  Google Scholar 

  12. Gong, S., Park, C., Choi, H., Ko, J., Jang, I., Lee, J., Bolser, D.M., Oh, D.: A protein domain interaction interface database: Interpare. BMC Bioinformatics 6(207) (2005)

    Google Scholar 

  13. Sadoc, J.F., Jullien, R., Rivier, N.: The laguerre polyhedral decomposition: Application to protein folds. European Physical Journal B 33, 355–363 (2003)

    Article  MathSciNet  Google Scholar 

  14. Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Transactions on Information Theory IT-29(4), 551–559 (1983)

    Article  MathSciNet  Google Scholar 

  15. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Transactions on Graphics 13(1), 43–72 (1994)

    Article  MATH  Google Scholar 

  16. Edelsbrunner, H.: Weighted alpha shapes. Technical Report UIUCDCS-R-92-1760, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL (1992)

    Google Scholar 

  17. Kim, D.S., Seo, J., Kim, D., Ryu, J., Cho, C.H.: Three-dimensional beta shapes. Computer-Aided Design 38(11), 1179–1191 (2006)

    Article  Google Scholar 

  18. Kim, D.S., Cho, C.H., Kim, D., Cho, Y.: Recognition of docking sites on a protein using β-shape based on Voronoi diagram of atoms. Computer-Aided Design 38(5), 431–443 (2006)

    Article  Google Scholar 

  19. Ryu, J., Park, R., Kim, D.-S.: Molecular surfaces on proteins via beta shapes. Computer-Aided Design 39(12), 1042–1057 (2007)

    Article  Google Scholar 

  20. Seo, J., Cho, Y., Kim, D., Kim, D.S.: An efficient algorithm for three-dimensional β-complex and β-shape via a quasi-triangulation. In: Proceedings of the ACM Symposium on Solid and Physical Modeling, pp. 323–328 (2007)

    Google Scholar 

  21. Goede, A., Preissner, R., Frömmel, C.: Voronoi cell: New method for allocation of space among atoms: Elimination of avoidable errors in calculation of atomic volume. Journal of Computational Chemistry 18(9), 1113–1123 (1997)

    Article  Google Scholar 

  22. Poupon, A.: Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. Current Opinion in Structural Biology 14, 233–241 (2004)

    Article  Google Scholar 

  23. Hopfinger, A.J.: Conformational Properties of Macromolecules. Academic Press, London (1973)

    Google Scholar 

  24. Connolly, M.L.: Analytical molecular surface calculation. Journal of Applied Crystallography 16, 548–558 (1983)

    Article  Google Scholar 

  25. Connolly, M.L.: Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–713 (1983)

    Article  Google Scholar 

  26. (RCSB Protein Data Bank Homepage), http://www.rcsb.org/pdb/

  27. Kim, D.S., Cho, Y., Kim, D.: Euclidean Voronoi diagram of 3D balls and its computation via tracing edges. Computer-Aided Design 37(13), 1412–1424 (2005)

    Article  Google Scholar 

  28. Kim, D.S., Cho, Y., Kim, D., Cho, C.H.: Protein sructure analysis using Euclidean Voronoi diagram of atoms. In: Proceedings of the International Workshop on Biometric Technologies (BT 2004), pp. 125–129 (2004)

    Google Scholar 

  29. Kim, D.S., Cho, Y., Kim, D., Kim, S., Bhak, J., Lee, S.H.: Euclidean Voronoi diagram of 3D spheres and applications to protein structure analysis. In: Proceedings of the 1st International Symposium on Voronoi Diagrams in Science and Engineering (VD 2004), pp. 137–144 (2004)

    Google Scholar 

  30. Kim, D.S., Kim, D., Cho, Y., Sugihara, K.: Quasi-triangulation and interworld data structure in three dimensions. Computer-Aided Design 38(7), 808–819 (2006)

    Article  Google Scholar 

  31. Cho, Y., Kim, D., Kim, D.S.: Topology representation for the Voronoi diagram of 3D spheres. International Journal of CAD/CAM 5(1), 59–68 (2005), http://www.ijcc.org

    Google Scholar 

  32. Seo, J., Kim, D., Cho, C.H., Kim, D.S.: A β-shape from the Voronoi diagram of atoms for protein structure analysis. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 101–110. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  33. Lee, B., Richards, F.M.: The interpretation of protein structures: Estimation of static accessibility. Journal of Molecular Biology 55, 379–400 (1971)

    Article  Google Scholar 

  34. Richards, F.M.: Areas, volumes, packing, and protein structure. Annual Review of Biophysics and Bioengineering 6, 151–176 (1977)

    Article  Google Scholar 

  35. Ryu, J., Park, R., Cho, Y., Seo, J., Kim, D.S.: β-shape based computation of blending surfaces on a molecule. In: Proceeding of the 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007), pp. 189–198 (2007)

    Google Scholar 

  36. Bajaj, C.L., Pascucci, V., Shamir, A., Holt, R.J., Netravali, A.N.: Dynamic maintenance and visualization of molecular surfaces. Discrete Applied Mathematics 127(1), 23–51 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Parsons, D., Canny, J.: Geometric problems in molecular biology and robotics. In: Proceedings of the 2nd International Conference on Intelligent Systems for Molecular Biology, California, USA, Stanford University, pp. 322–330 (1994)

    Google Scholar 

  38. Shoichet, B.K., Kunts, I.D.: Protein docking and complementarity. Journal of Molecular Biology 221, 327–346 (1991)

    Article  Google Scholar 

  39. Edelsbrunner, H., Facello, M., Liang, J.: On the definition and the construction of pockets in macromolecules. Discrete Applied Mathematics 88, 83–102 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. Heifets, A., Eisenstein, M.: Effect of local shape modifications of molecular surfaces on rigid-body protein-protein docking. Protein Engineering 16(3), 179–185 (2003)

    Article  Google Scholar 

  41. Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P.V., Subramaniam, S.: Analytical shape computation of macromolecules: II. inaccessible cavities in proteins. PROTEINS: Structure, Function, and Genetics 33, 18–29 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, DS., Seo, J., Kim, D., Cho, Y., Ryu, J. (2009). The β-Shape and β-Complex for Analysis of Molecular Structures. In: Gavrilova, M.L. (eds) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in Computational Intelligence, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85126-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85126-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85125-7

  • Online ISBN: 978-3-540-85126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics