Skip to main content

A Groebner Bases Based Many-Valued Modal Logic Implementation in Maple

  • Conference paper
Intelligent Computer Mathematics (CICM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5144))

Included in the following conference series:

Abstract

The authors developed in the nineties a Groebner bases based polynomial model for classic Boolean algebra and many-valued modal logics and for rule based expert systems (RBES) based on these logics. Following this approach, they have designed and developed RBES in different fields. Now two Maple packages that can perform knowledge extraction and consistency checking in RBES which underlying logic is either classic Boolean or Kleene’s or Lukasiewicz’s many-valued modal have been developed and can be freely obtained from the authors. They extend the possibilities of Maple’s built-in “Logic” package.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alonso, J.A., Briales, E.: Lógicas Polivalentes y Bases de Gröbner. In: Martin, C. (ed.) Actas del V Congreso de Lenguajes Naturales y Lenguajes Formales. University of Seville, pp. 307–315 (1995)

    Google Scholar 

  2. Buchberger, B.: An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal (Ph.D. Thesis in German). Math. Institute - University of Innsbruck (1965)

    Google Scholar 

  3. Buchberger, B.: Applications of Gröbner Bases in Non-Linear Computational Geometry. In: Rice, J.R. (ed.) Mathematical Aspects of Scientific Software. IMA, vol. 14, pp. 60–88. Springer, Heidelberg (1988)

    Google Scholar 

  4. Chazarain, J., Riscos, A., Alonso, J.A., Briales, E.: Multivalued Logic and Gröbner Bases with Applications to Modal Logic. Journal of Symbolic Computation 11, 181–194 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hsiang, J.: Refutational Theorem Proving using Term-Rewriting Systems. Artificial Intelligence 25, 255–300 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kapur, D., Narendran, P.: An Equational Approach to Theorem Proving in First-Order Predicate Calculus. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI 1985), vol. 2, pp. 1146–1153 (1985)

    Google Scholar 

  7. Laita, L.M., de Ledesma, L., Roanes-Lozano, E., Roanes-Macías, E.: An Interpretation of the Propositional Boolean Algebra as a k-algebra. Effective Calculus. In: Calmet, J., Campbell, J.A. (eds.) AISMC 1994. LNCS, vol. 958, pp. 255–263. Springer, Heidelberg (1995)

    Google Scholar 

  8. Pérez-Carretero, C., Laita, L.M., Roanes-Lozano, E., Lázaro, L., González-Cajal, J., Laita, L.: A Logic and Computer Algebra-Based Expert System for Diagnosis of Anorexia. Mathematics and Computers in Simulation 58, 183–202 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Roanes-Lozano, E., Laita, L.M., Roanes-Macías, E.: Maple V in A.I.: The Boolean Algebra Associated to a KBS. CAN Nieuwsbrief 14, 65–70 (1995)

    Google Scholar 

  10. Roanes Lozano, E., Laita, L.M., Roanes-Macías, E.: A Polynomial Model for Multivalued Logics with a Touch of Algebraic Geometry and Computer Algebra. Mathematics and Computers in Simulation 45(1), 83–99 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Roanes-Lozano, E., Roanes-Macías, E., Laita, L.M.: Geometric Interpretation of Strong Inconsistency in Knowledge Based Systems. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing. Proceedings of CASC 1999, pp. 349–363. Springer, Heidelberg (1999)

    Google Scholar 

  12. Roanes-Lozano, E., Roanes-Macías, E., Laita, L.M.: The Geometry of Algebraic Systems and Their Exact Solving Using Groebner Bases. Computing in Science and Engineering 6(2), 76–79 (2004)

    Article  Google Scholar 

  13. Roanes-Lozano, E., Roanes-Macías, E., Laita, L.M.: Some Applications of Gröbner Bases. Computing in Science and Engineering 6(3), 56–60 (2004)

    Article  Google Scholar 

  14. Roanes-Macías, E., Roanes-Lozano, E.: Cálculos Matemáticos por Ordenador con Maple V.5, Ed. Rubiños-1890, Madrid (1999)

    Google Scholar 

  15. CoCoA: a system for doing Computations in Commutative Algebra, http://cocoa.dima.unige.it

  16. URL, http://www.maplesoft.com/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Serge Autexier John Campbell Julio Rubio Volker Sorge Masakazu Suzuki Freek Wiedijk

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roanes-Lozano, E., Laita, L.M., Roanes-Macías, E. (2008). A Groebner Bases Based Many-Valued Modal Logic Implementation in Maple. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds) Intelligent Computer Mathematics. CICM 2008. Lecture Notes in Computer Science(), vol 5144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85110-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85110-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85109-7

  • Online ISBN: 978-3-540-85110-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics