Skip to main content

Estimating the dynamics of kernel-based evolving networks

  • Conference paper
Unifying Themes in Complex Systems

Abstract

In this paper we present the application of a novel methodology to scientific citation and collaboration networks. This methodology is designed for understanding the governing dynamics of evolving networks and relies on an attachment kernel, a scalar function of node properties, that stochastically drives the addition and deletion of vertices and edges. We illustrate how the kernel function of a given network can be extracted from the history of the network and discuss other possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Albert, Réka, and Albert-László Barabási, “Statistical mechanics of complex networks”, Reviews of Modern Physics 74 (2002), 47.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Barabási, AL, H Jeong, Z Néda, E Ravasz, A Schubert, and T Vicsek, “Evolution of the social network of scientific collaborations”, Physica A 311 (2002), 590–614.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Barabási, Albert-László, and Réka Albert, “Emergence of scaling in random networks”, Science 286, 5439 (1999), 509–512.

    Article  MathSciNet  Google Scholar 

  4. Belisle, C. J. R, “Convergence theorems for a class of simulated annealing algorithms on rd”, Journal of Applied Probability 29 (1992), 885–895.

    Article  MathSciNet  MATH  Google Scholar 

  5. Berg, Johannes, Michael Lssig, and Andreas Wagner, “Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications”, BMC Evolutionary Biology 4 (2004), 51.

    Article  Google Scholar 

  6. Csárdi, Gábor, “Dynamics of citation networks”, Proceedings of the Conference on Artificial Neural Networks, (2006).

    Google Scholar 

  7. CSárdi, Gábor, Katherine J Strandburg, László Zalányi, Jan Tobochnik, and Péter Érdi, “Modeling innovation by a kinetic description of the patent system”, Physica A 374 (2007), 783–793.

    Article  ADS  Google Scholar 

  8. Jeong, Hawoong, Zoltán Néda, and Albert-László Barabási, “Measuring preferential attachment for evolving networks”, Europhys. Lett. 61 (2003), 567–572.

    Article  ADS  Google Scholar 

  9. Krapivsky, P.L., S. Redner, and F. Leyvraz, “Connectivity of growing random networks”, Physical Review Letters 85 (2000), 4629–4632.

    Article  ADS  Google Scholar 

  10. Lehmann, S., B. Lautrup, and A. D. Jackson, “Citation networks in high energy physics”, Physical Review E 68 (2003), 026113.

    Article  ADS  Google Scholar 

  11. Newman, MEJ, “Scientific collaboration networks.I. Network construction and fundamental results”, Physical Review E 64 (2001), 016131.

    Article  ADS  Google Scholar 

  12. Newman, M. E. J., “Clustering and preferential attachment in growing networks”, Physical Review E 64 (2001), 025102.

    Article  ADS  Google Scholar 

  13. Newman, M. E. J., “The structure and function of complex networks”, SIAM Review 45 (2003), 167–256.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Nocedal, J., and S. J. Wright, Numerical Optimization, Springer (1999).

    Google Scholar 

  15. Redner, Sidney, “Citation statistics from 110 years of physical review”, Physics Today 58 (2005), 49.

    Article  Google Scholar 

  16. Watts, Duncan J., and Steven H. Strogatz, “Collective dynamics of small world networks”, Nature 393 (1998), 440–442.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Csárdi, G., Strandburg, K., Zalányi, L., Tobochnik, J., érdi, P. (2010). Estimating the dynamics of kernel-based evolving networks. In: Minai, A., Braha, D., Bar-Yam, Y. (eds) Unifying Themes in Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85081-6_12

Download citation

Publish with us

Policies and ethics