Abstract
The Dendritic Cell Algorithm is an immune-inspired algorithm originally based on the function of natural dendritic cells. The original instantiation of the algorithm is a highly stochastic algorithm. While the performance of the algorithm is good when applied to large real-time datasets, it is difficult to analyse due to the number of random-based elements. In this paper a deterministic version of the algorithm is proposed, implemented and tested using a port scan dataset to provide a controllable system. This version consists of a controllable amount of parameters, which are experimented with in this paper. In addition the effects are examined of the use of time windows and variation on the number of cells, both which are shown to influence the algorithm. Finally a novel metric for the assessment of the algorithms output is introduced and proves to be a more sensitive metric than the metric used with the original Dendritic Cell Algorithm.
Keywords
- Danger Signal
- Anomaly Detection
- Safe Signal
- Antigen Type
- Deterministic Version
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Aickelin, U., Bentley, P., Cayzer, S., Kim, J., McLeod, J.: Danger theory: The link between AIS and IDS. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 147–155. Springer, Heidelberg (2003)
Al-Hammadi, Y., Aickelin, U., Greensmith, J.: DCA for detecting bots. In: Proc. of the Congress on Evolutionary Computation (CEC), page tba (to appear, 2008)
Greensmith, J.: The Dendritic Cell Algorithm. PhD thesis, School of Computer Science, University Of Nottingham (2007)
Greensmith, J., Aickelin, U., Cayzer, S.: Introducing Dendritic Cells as a novel immune-inspired algorithm for anomaly detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)
Greensmith, J., Aickelin, U., Feyereisl, J.: The DCA-SOMe comparison: A comparative study between two biologically-inspired algorithms. Evolutionary Intelligence: Special Issue on Artificial Immune Systems (accepted for publication, 2008)
Greensmith, J., Aickelin, U., Tedesco, G.: Information fusion for anomaly detection with the DCA. Information Fusion (in print) (2008)
Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the Dendritic Cell Algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 404–417. Springer, Heidelberg (2006)
Greensmith, J., Twycross, J., Aickelin, U.: Dendritic cells for anomaly detection. In: Proc. of the Congress on Evolutionary Computation (CEC), pp. 664–671 (2006)
Lay, N., Bate, I.: Improving the reliability of real-time embedded systems using innate immune techniques. Evolutionary Intelligence: Special Issue on Artificial Immune Systems (2008)
Lutz, M., Schuler, G.: Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends in Immunology 23(9), 991–1045 (2002)
Oates, R., Greensmith, J., Aickelin, U., Garibaldi, J., Kendall, G.: The application of a dendritic cell algorithm to a robotic classifier. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 204–215. Springer, Heidelberg (2007)
Oates, R., Kendall, G., Garibaldi, J.: and. Frequency analysis for dendritic cell population tuning: Decimating the dendritic cell. Evolutionary Intelligence: Special Issue on Artificial Immune Systems (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Greensmith, J., Aickelin, U. (2008). The Deterministic Dendritic Cell Algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds) Artificial Immune Systems. ICARIS 2008. Lecture Notes in Computer Science, vol 5132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85072-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-85072-4_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85071-7
Online ISBN: 978-3-540-85072-4
eBook Packages: Computer ScienceComputer Science (R0)