Advertisement

Efficient Helper Data Key Extractor on FPGAs

  • Christoph Bösch
  • Jorge Guajardo
  • Ahmad-Reza Sadeghi
  • Jamshid Shokrollahi
  • Pim Tuyls
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5154)

Abstract

Physical Unclonable Functions (PUFs) have properties that make them very attractive for a variety of security-related applications. Due to their inherent dependency on the physical properties of the device that contains them, they can be used to uniquely bind an application to a particular device for the purpose of IP protection. This is crucial for the protection of FPGA applications against illegal copying and distribution. In order to exploit the physical nature of PUFs for reliable cryptography a so-called helper data algorithm or fuzzy extractor is used to generate cryptographic keys with appropriate entropy from noisy and non-uniform random PUF responses. In this paper we present for the first time efficient implementations of fuzzy extractors on FPGAs where the efficiency is measured in terms of required hardware resources. This fills the gap of the missing building block for a full FPGA IP protection solution. Moreover, in this context we propose new architectures for the decoders of Reed-Muller and Golay codes, and show that our solutions are very attractive from both the area and error correction capability points of view.

Keywords

Physical Unclonable Functions Intrinsic PUF Fuzzy Extractor Helper Data Algorithm FPGAs Implementation 

References

  1. 1.
    Pappu, R.S., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science 297(6), 2026–2030 (2002)CrossRefGoogle Scholar
  2. 2.
    Tuyls, P., Schrijen, G.-J., S̆korić, B., van Geloven, J., Verhaegh, N., Wolters, R.:: Read-Proof Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Trusted Computing Group: TPM main specification. Technical Report Version 1.2 Revision 94 (March 2006)Google Scholar
  4. 4.
    Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical unknown functions. In: Atluri, V. (ed.) ACM Conference on Computer and Communications Security — CCS 2002, pp. 148–160. ACM, New York (2002)CrossRefGoogle Scholar
  5. 5.
    Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Škorić, B., Bel, T., Blom, A., de Jong, B., Kretschman, H., Nellissen, A.: Randomized resonators as uniquely identifiable anti-counterfeiting tags. Technical report, Philips Research Laboratories (January 28, 2008)Google Scholar
  7. 7.
    Kean, T.: Cryptographic rights management of FPGA intellectual property cores. In: ACM/SIGDA International Symposium on Field-Programmable Gate Arrays — FPGA 2002, pp. 113–118 (2002)Google Scholar
  8. 8.
    Simpson, E., Schaumont, P.: Offline Hardware/Software Authentication for Reconfigurable Platforms. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 311–323. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Physical Unclonable Functions and Public Key Crypto for FPGA IP Protection. In: International Conference on Field Programmable Logic and Applications — FPL 2007, August 27-30, 2007, pp. 189–195. IEEE, Los Alamitos (2007)CrossRefGoogle Scholar
  10. 10.
    Linnartz, J.P.M.G., Tuyls, P.: New Shielding Functions to Enhance Privacy and Prevent Misuse of Biometric Templates. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 393–402. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Dodis, Y., Reyzin, M., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Suh, G.E., O’Donnell, C.W., Devadas, S.: AEGIS: A Single-Chip Secure Processor. IEEE Design & Test of Computers 24(6), 570–580 (2007)CrossRefGoogle Scholar
  13. 13.
    Dijk, M.v., Lim, D., Devadas, S.: Reliable Secret Sharing With Physical Random Functions. Computation Structures Group Memo 475, CSAIL — Massachusetts Institute of Technology (2004)Google Scholar
  14. 14.
    Gassend, B.: Physical Random Functions. Master’s thesis, Computer Science and Artificial Intelligence Laboratory, MIT Computation Structures Group Memo 458 (February 2003)Google Scholar
  15. 15.
    Juels, A., Wattenberg, M.: A Fuzzy Commitment Scheme. In: Motiwalla, J., Tsudik, G. (eds.) ACM Conference on Computer and Communications Security — ACM CCS 1999, November 1-4, 1999, pp. 28–36. ACM, New York (1999)CrossRefGoogle Scholar
  16. 16.
    Hao, F., Anderson, R., Daugman, J.: Combining Crypto with Biometrics Effectively. IEEE Transactions on Computers 55(9), 1081–1088 (2006)CrossRefGoogle Scholar
  17. 17.
    Hochquenghem, A.: Codes Correcteurs D’erreurs. Chiffres 2, 147–156 (1959)MathSciNetGoogle Scholar
  18. 18.
    Bose, R.C., Ray-Chaudhuri, D.K.: On a Class of Error-Correcting Binary Group Codes. Information and Control 3, 68–79 (1960)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Forney Jr., G.D.: Concatenated Codes. Research Monograph No. 37. MIT Press, Cambridge (1966)Google Scholar
  20. 20.
    Blahut, R.E.: Theory and Practice of Error Control Codes, 1st edn. Addison-Wesley Publishing Company, Reading (1985)Google Scholar
  21. 21.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Mathematical Library, vol. 16. North-Holland/Elsevier, Amsterdam (1977)MATHGoogle Scholar
  22. 22.
    Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Xilinx: Device Reliability Report — Fourth Quarter 2007. Technical Report UG116 (v4.3) (February 6, 2008), http://www.xilinx.com/support/documentation/
  24. 24.
    Altera: Reliability Report 45 — Q2 2007. Technical report (2007), http://www.altera.com/literature/lit-index.html.
  25. 25.
    MacKay, D.J.C.: Good Error-Correcting Codes Based on Very Sparse Matrices. IEEE Transactions on Information Theory 45(2), 399–431 (1999)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Levine, B.A., Reed Taylor, R., Schmit, H.: Implementation of Near Shannon Limit Error-Correcting Codes Using Reconfigurable Hardware. In: IEEE Symposium on Field-Programmable Custom Computing Machines — FCCM 2000, April 17-19, 2000, pp. 217–226. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  27. 27.
    Brack, T., Kienle, F., Wehn, N.: Disclosing the LDPC code decoder design space. In: Gielen, G.G.E. (ed.) Conference on Design, Automation and Test in Europe — DATE 2006, European Design and Automation Association, Leuven, Belgium, March 6-10, 2006, pp. 200–205 (2006)Google Scholar
  28. 28.
    Bösch, C.: Efficient fuzzy extractors for reconfigurable hardware. Master’s thesis, Chair for System Security, Department of Electrical Engineering and Information Science, Ruhr-Universität Bochum (March 2008)Google Scholar
  29. 29.
    Desset, C., Macq, B., Vandendorpe, L.: Block error-correcting codes for systems with a very high BER: Theoretical analysis and application to the protection of watermarks. Signal Processing: Image Communication 17(5), 409–421 (2002)CrossRefGoogle Scholar
  30. 30.
    Desset, C., Macq, B.M., Vandendorpe, L.: Computing the word-, symbol-, and bit-error rates for block error-correcting codes. IEEE Transactions on Communications 52(6), 910–921 (2004)CrossRefGoogle Scholar
  31. 31.
    Krawczyk, H.: LFSR-based Hashing and Authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)Google Scholar
  32. 32.
    Nevelsteen, W., Preneel, B.: Software Performance of Universal Hash Functions. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 24–41. Springer, Heidelberg (1999)Google Scholar
  33. 33.
    Kaps, J.P., Yüksel, K., Sunar, B.: Energy Scalable Universal Hashing.. IEEE Trans. Computers 54(12), 1484–1495 (2005)CrossRefGoogle Scholar
  34. 34.
    Vanstone, S.A., van Oorschot, P.C.: An Introduction to Error Correcting Codes with Applications. Kluwer Academic Publishers, Dordrecht (1989)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christoph Bösch
    • 1
  • Jorge Guajardo
    • 2
  • Ahmad-Reza Sadeghi
    • 1
  • Jamshid Shokrollahi
    • 1
  • Pim Tuyls
    • 2
  1. 1.Horst-Görtz-Institute for IT-SecurityRuhr-University BochumGermany
  2. 2.Philips Research EuropeEindhovenThe Netherlands

Personalised recommendations