Skip to main content

Applications of Scanning Near-Field Optical Microscopy in Life Science

  • Chapter
Applied Scanning Probe Methods XII

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Scanning Near-Field Optical Microscopy (SNOM) is capable of attaining sub-diffraction resolution by exploiting nanoscopic light sources to illuminate the samples, such as nanoapertures or sharp metallic tips. In this chapter, after describing the basic principles of SNOM, we review the state-of-the-art in the experimental implementations and applications of fluorescence, infrared and Raman SNOM for the detection and imaging of DNA oligonucleotides, viruses and cellular membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stephens DJ, Allan VJ (2003) Science 300:82

    Article  CAS  Google Scholar 

  2. Sako Y, Yanagida T (2003) Nature Cell Biol Suppl S, SS1.

    Google Scholar 

  3. Garcia-Parajo MF, Veerman JA, Bouwhuis R, Vallee R, van Hulst NF (2001) Chem Phys Chem 2:347.

    Article  CAS  Google Scholar 

  4. Edman L, Mets U, Rigler R (1996) Proc Natl Acad Sci USA, 93:6710

    Google Scholar 

  5. Schmidt T, Schutz GJ, Baumgartner W, Gruber HJ, Schindler H (1995) J Phys Chem 99:17662

    Article  CAS  Google Scholar 

  6. Lu HP, Xun L, Xie XS (1998) 282:1877.

    Google Scholar 

  7. Harada Y, Funatsu T, Murakami K, Nonoyama Y, Ishiama A, Yanagida T (1999) Biophys J 76:709

    Article  CAS  Google Scholar 

  8. Abbe E (1873) Arch Mikroskop Anat 9:413

    Article  Google Scholar 

  9. Hell SW, Stelzer EH (1992) J Opt Soc Am 9:2159

    Article  Google Scholar 

  10. Klar TA, Kakobs S, Dyba M, Egner A, Hell SW (2000) Proc Natl Acad Sci USA 97:8206

    Google Scholar 

  11. Pohl DW, Denk W, Lanz M (1984) Appl Phys Lett 44:651.

    Article  Google Scholar 

  12. Lewis A, Isaacson M, Harootunian A, Murray A (1984) Ultramicroscopy 13:227

    Article  Google Scholar 

  13. Zenhausern F, O’Boyle MP, Wickramasinghe HK (1994) Appl Phys Lett 65:1623

    Article  CAS  Google Scholar 

  14. Bachelot R, Gleyzes P, Boccara AC (1995) Opt Lett 20:1924

    Article  CAS  Google Scholar 

  15. Labardi M, Gucciardi PG, Allegrini M (2001) La Rivista del Nuovo Cimento 23:1.

    Google Scholar 

  16. Patanè S, Gucciardi PG, Labardi M, Allegrini M (2004) La Rivista del Nuovo Cimento 27:1

    Google Scholar 

  17. Cefalì E, Patanè S, Spadaro S, Gardelli R, Albani M, Allegrini M (2007) In: Bushan B, Fuchs H, Tomitori M (eds) Applied scanning probe methods, vol VIII. Springer, Berlin, p 78

    Google Scholar 

  18. Gucciardi PG, Bachelier G, Stranick S, Allegrini M (2008) In: Bushan B, Fuchs H, Tomitori M (eds) Applied scanning probe methods, vol VIII. Springer, Berlin, p 1

    Google Scholar 

  19. Gucciardi PG, Trusso S, Vasi C, Patanè S, Allegrini M (2007) In: Bhushan B, Fuchs H, Kawata (eds) Applied scanning probe methods, vol V. Springer, Berlin, p 287

    Google Scholar 

  20. Pawley JB (2006) Handbook of biological confocal microscopy, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  21. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Betzig E, Finn P, Weiner JS (1992) Appl Phys Lett 60:2484

    Article  CAS  Google Scholar 

  23. Karrai K, Grober RD (1995) Appl. Phys. Lett. 66:1842

    Article  CAS  Google Scholar 

  24. Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Science 251:1468

    Article  CAS  Google Scholar 

  25. Veerman JA, Otter AM, Kuipers L, van Hulst NF (1998) Appl Phys Lett 72:3115

    Article  CAS  Google Scholar 

  26. Gucciardi PG, Colocci M, Labardi M, Allegrini M (1999) Appl Phys Lett 75:3408

    Article  CAS  Google Scholar 

  27. Ambrosio A, Allegrini M, Latini G, Cacialli F (2005) Appl Phys Lett 87:033109

    Article  Google Scholar 

  28. Dickenson NE, Erickson ES, Mooren OL, Dunn RC (2007) Rev Sci Instrum 78:053712

    Article  Google Scholar 

  29. Erickson ES, Dunn RC (2005) Appl Phys Lett 87:201102

    Article  Google Scholar 

  30. Gucciardi PG, Patanè S, Ambrosio A, Allegrini M, Downes AD, Latini G, Fenwick O, Cacialli F (2005) Appl Phys Lett 86:203109

    Article  Google Scholar 

  31. Intonti F, Emiliani V, Lienau Ch, Elsaesser Th, Noetzel R, Ploog KH (2001) Phys Rev B 63:075313

    Article  Google Scholar 

  32. Intonti F, Emiliani V, Lienau Ch, Elsaesser Th, Noetzel R, Ploog KH (2001) Phys Rev B 64:155316

    Article  Google Scholar 

  33. Mihalcea C, Scholz W, Werner S, Muenster S, Oesterschulze E, Kassing R (1996) Appl Phys Lett 68:3531

    Article  CAS  Google Scholar 

  34. Biagioni P, Polli D, Pucci A, Ruggeri G, Labardi M, Cerullo G, Finazzi M, Duò L (2005) Appl Phys Lett 87:223112

    Article  Google Scholar 

  35. Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930

    Article  Google Scholar 

  36. Novotny L, Stranick SJ (2006) Annu Rev Phys Chem 57:303

    Article  CAS  Google Scholar 

  37. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Phys Rev Lett 49:57

    Article  Google Scholar 

  38. Ma Z, Gerton JM, Wade LA, Quake SR (2006) Phys Rev Lett 97:260801

    Article  Google Scholar 

  39. Hartschuh A, Sanchez EJ, Xie S, Novotny L (2003) Phys Rev Lett 90:095503

    Article  Google Scholar 

  40. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92:096101

    Article  Google Scholar 

  41. De Bakker BI, de Lange F, Cambi A, Korterik JP, van Dijk EM, van Dijk EM, van Hulst NF, Figdor CG, Garcia-Parajo MF (2007) Chem Phys Chem 8:1473

    Article  Google Scholar 

  42. Gucciardi PG, Vinattieri A, Colocci M, Damilano B, Grandjean N, Semond F, Massies J (2001) J Microscopy-Oxford 202:212

    Article  CAS  Google Scholar 

  43. Gucciardi PG, Princi P, Pisani A, Favaloro A, Cutroneo G (2005) J Kor Phys Soc 47:S86

    CAS  Google Scholar 

  44. Gucciardi PG, Labardi M, Gennai S, Lazzeri F, Allegrini M (1997) Rev Sci Instrum 68:3088

    Article  CAS  Google Scholar 

  45. Gucciardi PG, Trusso S, Vasi C, Patanè S, Allegrini M (2002) Phys Chem Chem Phys 4:2747

    Article  CAS  Google Scholar 

  46. Lambelet P, Pfeffer A, Sayah A, Marquis-Weible F (1998) Ultramicroscopy 71:117

    Article  CAS  Google Scholar 

  47. Brunner R, Hering O, Marti O, Hollricher O (1997) Appl Phys Lett 71:3628

    Article  CAS  Google Scholar 

  48. Longo G, Girasole M, Cricenti A (2005) Phys Stat Sol B 15:3070

    Article  Google Scholar 

  49. Höppener C, Molenda D, Fuchs H, Naber A (2003) J Microsc-Oxford 210:288

    Article  Google Scholar 

  50. Koopman M, de Bakker BI, Garcia-Parajo MF, van Hulst NF (2003) Appl Phys Lett 83:5083

    Article  CAS  Google Scholar 

  51. Ren B, Picardi G, Pettinger B (2004) Rev Sci Instrum 75:837

    Article  CAS  Google Scholar 

  52. Billot L, Berguiga L, de la Chapelle ML, Gilbert Y, Bachelot R (2005) Eur Phys J-Appl Phys 31:139

    Article  CAS  Google Scholar 

  53. Bonaccorso F, Calogero G, Di Marco G, Maragò OM, Gucciardi PG, Giorgianni U, Channon K, Sabatino G (2007) Rev Sci Instrum 78:103702

    Article  CAS  Google Scholar 

  54. Novotny L, Bian RX, Xie XS (1997) Phys Rev Lett 79:645

    Article  CAS  Google Scholar 

  55. Mehtani D, Lee N, Hartschuh RD, Kisliuk A, Foster MD, Sokolov AP, Caiko F, Tsukerman I (2006) J Opt A Pure Appl Opt 8:S183

    Article  Google Scholar 

  56. Hillenbrand R, Keilmann F (2000) Phys Rev Lett 85:3029

    Article  CAS  Google Scholar 

  57. Hillenbrand R, Keilmann F (2002) Appl Phys Lett 80:25

    Article  CAS  Google Scholar 

  58. Labardi M, Patanè S, Allegrini M (2000) Appl Phys Lett 77:621

    Article  CAS  Google Scholar 

  59. Taubner T, Keilmann F, Hillenbrand R (2004) Nanolett 4:1669

    Article  CAS  Google Scholar 

  60. Taubner T, Hillenbrand R, Keilmann F (2004) Appl Phys Lett 85:5064

    Article  CAS  Google Scholar 

  61. Gucciardi PG, Bachelier G, Allegrini M (2006) J Appl Phys 99:124309

    Article  Google Scholar 

  62. Gucciardi PG, Bachelier G, Allegrini M, Ahn J, Hong M, Chang S, Jhe W, Hong SC, Baek SH (2007) J Appl Phys 101:064303

    Article  Google Scholar 

  63. Ossikowski R, Nguyen Q, Picardi G (2007) Phys Rev B 75:045412

    Article  Google Scholar 

  64. Gucciardi PG, Lopes M, Lamy de La Chapelle M (2008) Thin Sol Films 516:8064

    Google Scholar 

  65. Poborschii V, Tada T, Kanayama T (2005) Jpn J Appl Phys 44:L202

    Article  Google Scholar 

  66. Mehtani D, Lee N, Hartschuh RD, Kisliuk A, Foster MD, Sokolov AP, Maguire JF (2005) J Raman Spectrosc 36:1068

    Article  CAS  Google Scholar 

  67. Gucciardi PG, Lopes M, Deturche R, Julien C, Barchiesi D, Lamy de La Chapelle M (2008) Nanotechnol 19:215702

    Google Scholar 

  68. Brehm M, Taubner Th, Hillenbrand R, Keilmann F (2006) Nanolett 6:1307

    Article  CAS  Google Scholar 

  69. Knoll B, Keilmann F (1999) Nature 399:134

    Article  CAS  Google Scholar 

  70. Enderle Th, Ha T, Ogletree DF, Chemla DS, Magowan C, Weiss S (1997) Proc Natl Acad Sci USA 94:520

    Google Scholar 

  71. Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP (1990) Nature 345:315

    Article  CAS  Google Scholar 

  72. Yoshida M, Ozawa E (1990) J Biochem 108:748

    CAS  Google Scholar 

  73. Mondello MR, Bramanti P, Cutroneo G, Santoro G, Di Mauro D, Anastasi G (1996) Anat Rec 245:481

    Article  CAS  Google Scholar 

  74. Ohlendieck K (1996) Eur J Cell Biol 69:1

    CAS  Google Scholar 

  75. Yoshida M, Suzuki A, Yamamoto H, Noguchi S, Mizuno Y, Ozawa E (1994) Eur J Biochem 222:1055

    Article  CAS  Google Scholar 

  76. Lazarides E (1980) Nature 283:249

    Article  CAS  Google Scholar 

  77. Hynes RO (1992) Cell 69:11

    Article  CAS  Google Scholar 

  78. Anastasi G, Amato A, Tarone G, Vita G, Monici MC, Magaudda L, Brancaccio M, Sidoti A, Trimarchi F, Favaloro A, Cutroneo G (2003) Cells Tissues Organs 175:151

    Article  CAS  Google Scholar 

  79. Anastasi A, Cutroneo G, Pisani A, Bruschetta D, Milardi D, Princi P, Gucciardi PG, Bramanti P, Soscia L, Favaloro A (2007) J Microsc-Oxford 228:322

    Article  CAS  Google Scholar 

  80. Akira S (2003) Curr Opin Immunol 15:5

    Article  CAS  Google Scholar 

  81. Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GCF, Middel J, Cornelissen I, Nottet H, KewelRamani VN, Littman DR, Figdor CG, van Kooyk (2000) Cell 100:587

    Article  CAS  Google Scholar 

  82. Alvarez CP, Lasal F, Carrillo J, Muniz O, Corbi AL, Delago R (2002) J Virol 76:6841

    Article  CAS  Google Scholar 

  83. Pöhlmann S, Zhang J, Baribaud F, Chen Z, Leslie GJ, Lin G, Granelli-Piperno A, Doms RW, Rice CM, McKeating JA (2003) J Virol 77:4070

    Article  Google Scholar 

  84. Cambi A, de Lange F, van Maarseveen NM, Nijhuis M, Joosten B, van Dijk EM, de Bakker BI, Fransen JAM, Bovee-Geurts PHM, van Leeuwen NF, van Hulst NF (2004) J Cell Biol 164:145

    Article  CAS  Google Scholar 

  85. De Bekker BI, de Lange F, Cambi A, Korterik JP, van Dijk EM, van Hulst NF, Figdor CG, Garcia-Parajo MF (2007) Chem Phys Chem 8:1473

    Article  Google Scholar 

  86. Garcia-Parajo MF, De Bekker BI, Koopman M, Cambi A, de Lange F, Figdor CG, van Hulst NF (2005) NanoBiotechnology 1:113

    Article  CAS  Google Scholar 

  87. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1998) Phys Rev Lett 78:1667

    Article  Google Scholar 

  88. Nie SM, Emory SR (1997) Science 275:1102

    Article  CAS  Google Scholar 

  89. Watanabe H, Hayazawa N, Inouye Y, Kawata S (2005) J Phys Chem B 109:5012

    Article  CAS  Google Scholar 

  90. Ren B, Picardi G, Pettinger B, Schuster R, Ertl G (2005) Angew Chem 117:141

    Article  Google Scholar 

  91. Neugebauer U, Rösch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich Ch, Deckert V (2006) Chem Phys Chem 7:1428

    Article  CAS  Google Scholar 

  92. Domke KF, Zhang D, Pettinger B (2007) J Am Chem Soc 129:6708

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gucciardi, P.G. (2009). Applications of Scanning Near-Field Optical Microscopy in Life Science. In: Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods XII. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85039-7_3

Download citation

Publish with us

Policies and ethics