Abstract
Contact resonance force microscopy (CR-FM) methods such as atomic force acoustic microscopy show great promise as tools for nanoscale materials research. However, accurate and reliable CR-FM measurements require the simultaneous optimization of a large number of experimental conditions. Among these variables are cantilever spring constant, applied static load, reference material, and resonant mode (mode type and order). In addition, results depend on the models used for data analysis and interpretation (e.g., choice of contact-mechanics model). All of these parameters are linked in numerous ways that are not straighforward to classify. In this chapter, we present a “user’s guide” to quantitative measurements of nanomechanical properties with CR-FM methods. The discussion emphasizes the experimental methods and their practical implementation, providing a snapshot of the current state of the art. We discuss the basic physical principles involved and show how they can be used to make informed choices about experimental parameters and operating conditions. Experimental data and the results of theoretical models are provided as specific examples of the abstract concepts. Ideas for future work are also discussed, including ways to simplify the measurement process or improve measurement accuracy. The objective is not only to enable readers to perform their own CR-FM measurements, but also to optimize experimental conditions for a given material system. By gaining a better understanding of the underlying measurement principles, more researchers will be encouraged to further extend the technique and use it for an ever-wider range of applications for the nanoscale characterization of materials.
Keywords
- Atomic force acoustic microscopy
- Contact resonance force microscopy
- Elastic properties
- Nanomechanical properties
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
http://www.nano.gov/NNI_07Budget.pdf (accessed August 2008)
Oliver WC, Pharr GM (1992) J Mater Res 7:1564
Syed Asif SA, Wahl KJ, Colton RJ, Warren OL (2001) J Appl Phys 90:1192
Li X, Bhushan B (2002) Mater Charact 48:11
Every AG (2002) Meas Sci Technol 13:R21
Ogi H, Tian J, Tada T, Hirao M (2003) Appl Phys Lett 83:464
Cretin B, Sthal F (1993) Appl Phys Lett 62:829
Kraft O, Volkert CA (2001) Adv Engng Mater 3:99
Binning G, Quate CF, Gerber Ch (1986) Phys Rev Lett 56:930
Maivald P, Butt HJ, Gould SAC, Prater CB, Drake B, Gurley JA, Elings VB, Hansma PK (1991) Nanotechnology 2:103
Burnham NA, Kulik AJ, Gremaud G, Gallo PJ, Oulevey F (1996) J Vac Sci Technol B 14:794
Troyon M, Wang Z, Pastre D, Lei HN, Hazotte A (1997) Nanotechnology 8:163
Rosa-Zeiser A, Weilandt E, Hild S, Marti O (1997) Meas Sci Technol 8:1333
Cappella B, Dietler G (1999) Surface Sci Repts 34:1
Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Surface Sci 290:L688
Yamanaka K, Ogiso H, Kolosov OV (1994) Appl Phys Lett 64:178
Huey BD (2007) Annu Rev Mater Res (2007) 37:351
Cuberes MT, Assender HE, Briggs GAD, Kolosov OV (2000) J Phys D: Appl Phys33:2347
Yamanaka K, Nakano S (1996) Jpn J Appl Phys 35:3787
Rabe U, Arnold W (1994) Appl Phys Lett 64:1493
Dinelli F, Castell MR, Ritchie DA, Mason NJ, Briggs GAD, Kolosov OV (2000) Phil Mag A 80:2299
Rabe U (2006) Atomic force acoustic microscopy. In: Bushan B, Fuchs H (eds) Applied scanning probe methods, vol II. Springer, Berlin Heidelberg New York, p 37
Rabe U, Hirsekorn S, Reinstädtler M, Sulzbach T, Lehrer C, Arnold W (2007) Nanotechnology 18:044008
Hurley DC, Shen K, Jennett NM, Turner JA (2003) J Appl Phys 94:2347
Commercial equipment and materials are identified only in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
Zheng Y, Geer RE, Dovidenko K, Kopycinska-Müller M, Hurley DC (2006) J Appl Phys 100:124308
Papadakis EP (1990) The measurement of ultrasonic velocity. In: Thurston RN, Pierce AD (eds) Physical Acoustics, vol XIX. Academic Press, San Diego, p 81
Oliver WC, Pharr GM (2004) J Mater Res 19:3
Rabe U, Amelio S, Kopycinska M, Hirsekorn S, Kempf M, Göken M, Arnold W (2002) Surf Interf Anal 33:65
Stan G, Price W (2006) Rev Sci Instr 77:103707
Rabe U, Janser K, Arnold W (1996) Rev Sci Instr 67:3281
Turner JA, Hirsekorn S, Rabe U, Arnold W (1997) J Appl Phys 82:966
http://em-jaturner.unl.edu/AFMcalcs.htm (accessed August 2008)
Hurley DC, Turner JA (2007) J Appl Phys 102:033509
Wright OB, Nishiguchi N (1997) Appl Phys Lett 71:626
Rabe U, Turner J, Arnold W (1998) Appl Phys A 66:S277
Hurley DC, Turner JA (2004) J Appl Phys 95:2403
Hurley DC, Kopycinska-Müller M, Julthongpiput D, Fasolka MJ (2006) Appl Surf Sci 253:1274
Johnson KL (1985) Contact Mechanics. Cambridge University Press, Cambridge UK
Kopycinska-Müller M, Geiss RH, Hurley DC (2006) Ultramicroscopy 106:466
Langlois ED, Shaw GA, Kramar JA, Pratt JR, Hurley DC (2007) Rev Sci Instr 78:093705
Hurley DC, Turner JA, Wiehn JS, Rice P (2002) In: Meyendorf N, Baaklini GY, Michel B (eds) Proc of the SPIE 4703. SPIE Publishers, Bellingham WA, p 65
Rabe U, Kopycinska M, Hirsekorn S, Muñoz Saldaña J, Schneider GA, Arnold W (2002) J Phys D: Appl Phys 35:2621
Prasad M, Kopycinska M, Rabe U, Arnold W (2002) Geophys Res Lett 29:13–1
Amelio S, Goldade AV, Rabe U, Scherer V, Bhusan B, Arnold W (2001) Thin Solid Films 392:75
Passeri D, Bettucci A, Germano M, Rossi M, Alippi A, Sessa V, Fiori A, Tamburri E, Terranova ML (2006) Appl Phys Lett 88:121910
Preghnella M, Pegoretti A, Migliaresi C (2006) Polymer Testing 25:443
Kester E, Rabe R, Presmanes L, Tailhades Ph, Arnold W (2000) J Phys Chem Solids 61:1275
Passeri D, Bettucci A, Germano M, Rossi M, Alippi A, Orlanducci S, Terranova ML, Ciavarella M (2005) Rev Sci Instr 76:093904
Tsuji T, Saito S, Fukuda K, Yamanaka K, Ogiso H, Akedo J, Kawakami K (2005) Appl Phys Lett 87:071909
Hurley DC, Kopycinska-Müller M, Kos AB, Geiss RH (2005) Meas Sci Technol 16:2167
Hurley DC, Geiss RH, Jennett NM, Kopycinska-Müller M, Maxwell AS, Müller J, Read DT, Wright JE (2005) J Mater Res 20:1186
Kopycinska-Müller M, Geiss RH, Müller J, Hurley DC (2005) Nanotechnology 16:703
Passeri D, Rossi M, Alippi A, Bettucci A, Manno D, Serra A, Filippo E, Lucci M, Davoli I (2008) Superlattices and Microstructures, in press, doi:10.1016/j.spmi.2007.10.004
Dupas E, Gremaud G, Kulik A, Loubet J-L (2001) Rev Sci Instr 72:3891
Stan G, Ciobanu CV, Parthangal PM, Cook RF (2007) Nano Lett 7:3691
Oulevey F, Gremaud G, Mari D, Kulik AJ, Burnham NA, Benoit W (2000) Scripta mater 42:31
Crozier KB, Yaralioglu GG, Degertkin FL, Adams JD, Minne SC, Quate CF (2000) Appl Phys Lett 76:1950
Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Phys Rev B 69:165410
Mangamma G, Mohan Kant K, Rao MSR, Kalavathy S, Kamruddin M, Dash S, Tyagi AK (2007) J Nanosci Nanotechnol 7:2176
Reinstädtler M, Rabe U, Scherer V, Hartmann U, Goldade A, Bhushan B, Arnold W (2003) J Appl Phys 82:2604
Drobek T, Stark RW, Gräber M, Heckl WM (1999) New J Phys 1:15
Kawagishi T, Kato A, Hoshi Y, Kawakatsu H (2002) Ultramicroscopy 91:37
Caron A, Rabe U, Reinstädtler M, Turner JA, Arnold W (2004) Appl Phys Lett 85:6398
Song Y, Bhushan B (2005) J Appl Phys 97:083533
Scherer V, Reinstädtler M, Arnold W (2004) Atomic force microscopy with lateral modulation. In: Bhushan B, Fuchs H, Hosaka S (eds) Applied scanning probe methods, vol I. Springer, Berlin Heidelberg New York, p 75
Reinstädtler M, Kasai T, Rabe U, Bhushan B, Arnold W (2005) J Phys D: Appl Phys 38:R269
Mazeran PE, Loubet JL (1997) Trib Lett 3:125
Rabe U, Amelio S, Kester E, Scherer V, Hirsekorn S, Arnold W (2000) Ultrasonics 38:430
Turner JA, Wiehn JS (2001) Nanotechnology 12:322
Chang WJ (2002) Nanotechnology 13:510
Wu TS, Chang WJ, Hsu JC (2004) Microelectronic Engineering 71:15
Sthal F, Cretin B (1995) In: Jones JP (ed) Acoustical imaging, vol 21. Plenum Press, New York, p 305
Yaralioglu GG, Degertekin FL, Crozier KB, Quate CF (2000) J Appl Phys 87:7491
Yamanaka K, Nakano S (1998) Appl Phys A 66:S313
Olson S, Sankaran B, Altemus B, Geer R, Castracane J, Xu B (2006) J Microlith Microfab Microsyst 5:021197
Burnham NA, Gremaud G, Kulik AJ, Gallo PJ, Oulevey F (1996) J Vac Sci Technol B 14:1308
Stark RW (2004) Rev Sci Instr 75:5053
Schäffer TE, Fuchs H (1995) J Appl Phys 97:083524
Yamanaka K, Tsuji T, Noguchi A, Koike T, Mihara T (2000) Rev Sci Instr 71:2403
Rabe U (2007) private communication
Rabe U, Scherer V, Hirsekorn S, Arnold W (1997) J Vac Sci Technol B 15:1506
Yamanaka K, Maruyama Y, Tsuji T, Nakamoto K (2001) Appl Phys Lett 78:1939
Kobayashi K, Yamada H, Matsushige K (2002) Surf Interf Anal 33:89
Efimov E, Saunin SA (2002) In: Proc of the scanning probe microscopy conference 2002, p 79. Available at http://ntmdt.com/publications? year = 2002 (accessed August 2008)
Hurley DC, Kos AB, Rice P (2005) In: Kalinin SV, Goldberg B, Eng LM, Huey BD (eds) Proc of the MRS 838E. Mater Res Soc, Warrendale PA, p O8.2.1
Kos AB and Hurley DC (2008) Meas Sci Technol 19:015504
Tsuji T, Yamanaka K (2001) Nanotechnology 12:301
Tsuji T, Irihama H, Yamanaka K (2002) Jpn J Appl Phys 41:832
Striegler A, Pathuri N, Köhler B, Bendjus B (2007) In: Thompson DO, Chimenti DE (eds) AIP Conference Proceedings 894, Rev Prog QNDE 2006. AIP Publishing, Melville NY, p 1572
McGuigan AP, Huey BD, Briggs GAD, Kolosov OV, Tsukahara Y, Yanaka M (2002) Appl Phys Lett 80:1180
Hurley DC, Kopycinska-Müller M, Langlois ED, Kos AB, Barbosa N, (2006) Appl Phys Lett 89:021911
Sarioglu AF, Atalar A, Degertekin FL (2004) Appl Phys Lett 84:5368
Reinstädtler M, Rabe U, Scherer V, Turner JA, Arnold W (2003) Surf Sci 532–535:1152
Adams JD, York D, Whisman N (2004) Rev Sci Instr 75:2903
Sahin O, Yaralioglu G, Grow R, Zappe SF, Atalar A, Quate C, Solgaard O (2004) Sens Act A 114:183
Sadewasser S, Villanueva G, Plaza JA (2006) Rev Sci Instr 77:073703
Mendels DA, Lowe M, Cuenat A, Cain MG, Vallejo E, Ellis D, Mendels F (2006) J Micromech Microeng 16:1720
Arinero R, Lévêque G (2003) Rev Sci Instr 74:104
Shen K, Hurley DC, Turner JA (2004) Nanotechnology 15:1582
Espinoza Beltrán FJ, Scholz T, Schneider GA, Muñoz-Saldaña J, Rabe U, Arnold W (2007) In: Meyer E, Hegner M, Gerber C, Güntherodt H-J (eds) J Phys Conference Series 61, Proc ICN& T 2006. IOP Publishing, Bristol UK, p 293
Villarrubia JS (1996) J Vac Sci Technol B 14:1518
Villarrubia JS (1997) J Res Natl Inst Stand Technol 102:425
Itoh H, Fujimoto T, Ichimura S (2006) Rev Sci Instr 77:103704
Muraoka M (2005), Nanotechnology 16:542
Schwarz UD, Zwörner O, Köster P, Wiesendanger R (1997) J Vac Sci Technol B 15:1527
Jesse S, Kalinin SV, Proksch R, Baddorf AP, Rodriguez BJ (2007) Nanotechnology 18:435503
Humphris ADL, Miles MJ, Hobbs JK (2005) Appl Phys Lett 86:034106
Hansma PK, Schitter G, Fantner GE, Prater C (2006) Science 314:601
Batog GS, Baturin AS, Bormashov VS, Sheshin EP (2006) Tech Phys 51:1084
Schwarz UD (2003) J Coll Interf Sci 261:99
Ebert A, Tittmann BR, Du J, Scheuchenzuber W (2006) Ultrasound Med Biol 32:1687
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hurley, D.C. (2009). Contact Resonance Force Microscopy Techniques for Nanomechanical Measurements. In: Applied Scanning Probe Methods XI. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85037-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-85037-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85036-6
Online ISBN: 978-3-540-85037-3
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)