Contact Atomic Force Microscopy: A Powerful Tool in Adhesion Science

  • Maurice Brogly
  • Houssein Awada
  • Olivier Noel
Part of the NanoScience and Technology book series (NANO)


Adhesion between two objects appears confusing or ambiguous, because the term is employed generally for two things: first, the formation of the interface between a pair of materials, i.e. the establishment of interfacial bonds through forces at the interface which cause materials to attract one another and second, the breaking stress or energy required to break the formed assembly. One can easily see that both interfacial forces and mechanical properties of adherents in the vicinity of the interface and in the bulk contribute to the global mechanical response of the assembly. Such a fundamental issue reflects a paradox that has stimulated intensive research for decades: what is the interplay between surface forces, surface rheology, and adhesive strength? In recent years, Atomic Force Microscopy (AFM) has become a powerful tool, sensitive enough, to detect small surface forces and to study adhesion at the nanoscale. Precise analysis of adhesion forces and surface mechanical properties of model polymer surfaces can be achieved with such a nanometer probe. The purpose and scope of this chapter is to highlight the experimental methods that enable one to dissociate the different contributions (chemical and mechanical) included in an AFM force-distance curve in order to establish quantitative relationships between interfacial tip–polymer interactions and surface viscoelastic properties of a polymer surface. New relationships are proposed that provide a complete understanding of how the adhesion separation energy depends on both surface chemistry and rheological behavior of the surface and thus at a local scale.


Adhesion Atomic force microscopy Self assembly monolayer Polymer surfaces Nano-indentation Contact mechanics Nanoscale 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dubourg F, Aimé JP (2000) Surface Sci 466:137CrossRefGoogle Scholar
  2. 2.
    Noel O, Awada H, Castelein G, Brogly M, Schultz J (2006) J Adhesion 82:649CrossRefGoogle Scholar
  3. 3.
    Brogly M, Noel O, Awada H, Castelein G, Schultz J (2006) Comptes Rendus de l’Académie des Sciences, Chimie 9:99CrossRefGoogle Scholar
  4. 4.
    Gauthier S, Aimé JP, Bouhacina T, Attias AJ, Desbat B (1996) Langmuir 12:5126CrossRefGoogle Scholar
  5. 5.
    Paiva A, Sheller N, Forster MD, Crosby AJ, Shull KR (2000) Macromolecules 33:1878CrossRefGoogle Scholar
  6. 6.
    Bushan B, Sundararajan S (1998) Acta Mater 46:3793CrossRefGoogle Scholar
  7. 7.
    Beake BD, Leggett GJ, Shipway PH (1999) Surface Interface Anal 27:1084CrossRefGoogle Scholar
  8. 8.
    Tomasetti E, Legras R, Nysten B (1998) Nanotechnologies 9:305CrossRefGoogle Scholar
  9. 9.
    Israelachvili J (1991) Intermolecular and surface forces, 2nd ed. Academic Press, New YorkGoogle Scholar
  10. 10.
    Gent AN, Schultz J (1972) J Adhesion 3:281CrossRefGoogle Scholar
  11. 11.
    Gutmann V (1977) The donor-acceptor approach to molecular interaction. Plenum Press, New YorkGoogle Scholar
  12. 12.
    Drago RS, Wayland BJ (1965) Am Chem Soc 87:3571CrossRefGoogle Scholar
  13. 13.
    Cain SR (1991) In: Mittal KL, Anderson H Jr (eds) Acid-base interactions: relevance to adhesion science and technology. VSP, ZeistGoogle Scholar
  14. 14.
    Fowkes FM (1987) J Adhesion Sci Technol 1:7CrossRefGoogle Scholar
  15. 15.
    Brogly M, Nardin M, Schultz J (1996) J Adhesion 58:263CrossRefGoogle Scholar
  16. 16.
    Burns AR, Houston JE, Carpick RW, Michalske TA (1999) Langmuir 15:2922CrossRefGoogle Scholar
  17. 17.
    Jones R, Pollock HM, Cleaver JAS, Hodges CS (2002) Langmuir 18:8045CrossRefGoogle Scholar
  18. 18.
    Rabinovich YI, Adler J, Ata A, Singh RK, Moudgil BM (2000) J Colloid Interface Sci. 232:10CrossRefGoogle Scholar
  19. 19.
    Unertl WN (2000) J Adhesion 74:195CrossRefGoogle Scholar
  20. 20.
    Basire C (1998) Ph. D. Thesis, Université Paris VI, Paris, FranceGoogle Scholar
  21. 21.
    Basire C, Fretigny C (2001) Tribol Lett 10:189CrossRefGoogle Scholar
  22. 22.
    Cuenot S, Duwez AS, Martin P, Nysten B (2002) Chimie Nouvelle 79:89Google Scholar
  23. 23.
    Cuenot S (2003) Ph. D. Thesis, Université Catholique de Louvain, Louvain, BelgiumGoogle Scholar
  24. 24.
    Aime JP, Boisgard R, Nony L, Couturier G (2001) J Chem Phys 114:4945CrossRefGoogle Scholar
  25. 25.
    Boisgard R, Aime JP, Couturier G (2002) Surface Sci 511:171CrossRefGoogle Scholar
  26. 26.
    Dubourg F (2002) Ph. D. Thesis, Université de Bordeaux I, Bordeaux, FranceGoogle Scholar
  27. 27.
    Noel O, Brogly M, Castellein G, Schultz J (2004) Langmuir 20:2707CrossRefGoogle Scholar
  28. 28.
    Albrecht TR, Akamine S, Carver, TE.,Quate CF (1990) J Vac Sci Technol 8:3386CrossRefGoogle Scholar
  29. 29.
    Sader JE, White LR (1993) J Appl Phys 74:1CrossRefGoogle Scholar
  30. 30.
    Hutter JL, Bechhoefer J (1993) Rev Sci Instrum 64:1868CrossRefGoogle Scholar
  31. 31.
    Sader JE, Larson I, Mulvaney P, White LR (1995) Rev Sci Instrum 66:3789CrossRefGoogle Scholar
  32. 32.
    Torrii A, Sasaki M, Hane K, Okuma S (1996) Meas Sci Technol 7:179CrossRefGoogle Scholar
  33. 33.
    Noel O (2003) Ph. D. Thesis, Université de Haute Alsace, Mulhouse, FranceGoogle Scholar
  34. 34.
    Chaudhury MK, Whitesides GM (1992) Science 255:1230CrossRefGoogle Scholar
  35. 35.
    Noel O, Brogly M, Castelein G, Schultz J (2004) Eur Polym J 40:965CrossRefGoogle Scholar
  36. 36.
    Awada H, Castelein G, Brogly M (2005) Surface Interface Anal 37:755CrossRefGoogle Scholar
  37. 37.
    Ruhe J, Novotny VJ, Kanazawa KK, Clarke T, Street GB (1993) Langmuir 9:2383CrossRefGoogle Scholar
  38. 38.
    Wasserman SR, Whitesides GM, Tidswell IM, Ocko BM, Pershan PS, Axe JD (1989) J Am Chem 111:5852CrossRefGoogle Scholar
  39. 39.
    Allara DL, Parikh AN, Rondelez F (1995) Langmuir 11:2357CrossRefGoogle Scholar
  40. 40.
    Sugawara Y, Ohta M, Konishi T, Morita S, Suzuki M, Enomoto Y (1993) Wear 168:13CrossRefGoogle Scholar
  41. 41.
    Derjaguin BV, Muller VM, Toporov YP (1975) J Colloid Interface Sci 53:314CrossRefGoogle Scholar
  42. 42.
    Xiao X, Oian L (2000) Langmuir 16:8153CrossRefGoogle Scholar
  43. 43.
    Sedin DL, Rowlen KL (2000) Analytical Chem 72:2183CrossRefGoogle Scholar
  44. 44.
    He M, Szuchmacher Blum A, Aston DE, Buenviaje C, Overney RM, Luginbuhl R (2001) J Chem Phys 114:1355CrossRefGoogle Scholar
  45. 45.
    Zhang L, Li L, Chan S, Jiang S (2002) Langmuir 18:5448CrossRefGoogle Scholar
  46. 46.
    Hu J, Xiao XD, Ogletree DF, Salmeron M (1995) Surface Sci 344:221CrossRefGoogle Scholar
  47. 47.
    Bruinsma R (1990) Macromolecules 23:276CrossRefGoogle Scholar
  48. 48.
    de Gennes PG (1985) Rev Mod Phys 57:827CrossRefGoogle Scholar
  49. 49.
    Riedo E, Levy F, Brune H (2002) Phys Rev Lett 88:185505CrossRefGoogle Scholar
  50. 50.
    Weeks BL, Vaughn MW, DeYoreo JJ (2005) Langmuir 21:8096CrossRefGoogle Scholar
  51. 51.
    Flory PJ (1944) Chem Rev 35:51CrossRefGoogle Scholar
  52. 52.
    Aime JP, Michel D, Boisgard R, Nony L (1999) Phys Rev B 59:2407CrossRefGoogle Scholar
  53. 53.
    Pethica JB, Sutton AP (1988) J Vac Sci Technol A 6:2490CrossRefGoogle Scholar
  54. 54.
    Johnson KL, Kendall K, Roberts AD (1971) Proc Royal Soc A324:301CrossRefGoogle Scholar
  55. 55.
    Papirer E, Balard H, Sidqi M (1993) J Colloid Interface Sci 159:238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Maurice Brogly
  • Houssein Awada
  • Olivier Noel

There are no affiliations available

Personalised recommendations