Skip to main content

Improving Musical Expressiveness by Time-Varying Brightness Shaping

  • Conference paper
Computer Music Modeling and Retrieval. Sense of Sounds (CMMR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4969))

Included in the following conference series:

Abstract

Former studies show that removing brightness temporal variations of tones in an expressive clarinet performance induces a decrease in the appreciation judgments among listeners. This study aims to investigate the reciprocal process where a time-varying brightness pattern is extracted from a clarinet performance and added to MIDI sound sequences generated by sampler-based instruments. Performances with and without brightness temporal variations have hereby been generated using samples from three sustained instruments (piccolo flute, clarinet and cello) and two non-sustained instruments (guitar and sitar). 20 listeners were asked to rate the dissimilarities between the performances in terms of interpretation, and then to select the performance they preferred. Results show that the application of the brightness temporal variations extracted from the clarinet performance increases the appreciation judgment of the performances for almost all the instruments used in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gabrielsson, A.: The Performance of Music. In: Psychology of Music, 2nd edn., Academic Press, London (1999)

    Google Scholar 

  2. Scholes, P.A.: The Oxford Companion to Music, 2nd edn., p. 521. Oxford University Press, Oxford (1960)

    Google Scholar 

  3. Repp, B.H.: Diversity and Commonality in Music Performance: an Analysis of Timing Microstructure in Schumann’s Träumerei. J. Acoust. Soc. Am. 92(5), 2546–2568 (1992)

    Article  Google Scholar 

  4. Palmer, C.: Music Performance. Annu. Rev. Psychol. 48, 115–138 (1997)

    Article  Google Scholar 

  5. Sundberg, J., Friberg, A., Frydén, L.: Rules for Automated Performance of Ensemble Music. Contemporary Music Review 3, 89–109 (1989)

    Article  Google Scholar 

  6. Widmer, G., Goebl, W.: Computational Models of Expressive Music Performance. J. New Music Research 33(3), 203–216 (2004)

    Article  Google Scholar 

  7. De Poli, G.: Expressiveness in Music Performance. In: Algorithms for Sound and Music Computing, Creative Commons (2006)

    Google Scholar 

  8. Lerdahl, F.: Les Hiérarchies de Timbre. In: Le Timbre, Métaphore pour la Composition, pp. 182–203. I.R.C.A.M. (1991)

    Google Scholar 

  9. Deutsch, D.: Grouping Mechanisms in Music. In: Psychology of Music, Cognition and Perception, pp. 299–348. Academic Press, New York (1999)

    Google Scholar 

  10. Seashore, C.E.: Psychology of Music. McGraw-Hill - Reprinted 1967 by Dover Publications, New York (1938)

    Google Scholar 

  11. Marozeau, J.: L’Effet de la Fréquence Fondamentale sur le Timbre. PhD thesis, Université Pierre et Marie Curie, Paris VI (2004)

    Google Scholar 

  12. Cadoz, C.: Timbre et Causalité. In: Le Timbre, Métaphore pour la Composition, pp. 17–46. I.R.C.A.M (1991)

    Google Scholar 

  13. ANSI: USA Standard Acoustical Terminology (1960)

    Google Scholar 

  14. AFNOR: Recueil des Normes Françaises de l’Acoustique, Tome 1 (Vocabulaire), NF S 30-107 (1977)

    Google Scholar 

  15. Bregman, A.: Sequential Integration. In: Auditory Scene Analysis, p.97 (1990)

    Google Scholar 

  16. Schaeffer, P.: Traité des Objets Musicaux. Editions du Seuil ed. (1966)

    Google Scholar 

  17. Grey, J.M.: Multidimensional Perceptual Scaling of Musical Timbres. J. Acoust. Soc. Am. 61, 1270–1277 (1977)

    Article  Google Scholar 

  18. Krumhansl, C.L.: Why Is Musical Timbre so Hard to Understand? In: Nielzén, S., Olsson, O. (eds.) Structure and Perception of Electroacoustic Sound and Music: Proc. of the Marcus Wallenberg Symposium Held in Lund, Sweden, pp. 43–53. Excerpta Medica, Amsterdam (1988)

    Google Scholar 

  19. McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., Krimphoff, J.: Perceptual Scaling of Synthesized Musical Timbres: Common Dimensions Specificities, and Latent Subject Classes. Psychological Research 58, 177–192 (1995)

    Article  Google Scholar 

  20. Caclin, A., McAdams, S., Smith, B.K., Winsberg, S.: Acoustic Correlates of Timbre Space Dimensions: A Confirmatory Study Using Synthetic Tones. J. Acoust. Soc. Am. 118(1), 471–482 (2005)

    Article  Google Scholar 

  21. Grey, J.W., Gordon, J.W.: Perception of Spectral Modifications on Orchestral Instrument Tones. Computer Music Journal 11(1), 24–31 (1978)

    Google Scholar 

  22. Beauchamp, J.W.: Synthesis by Spectral Amplitude and Brightness Matching of Analyzed Musical Instrument Tones. J. Audio Eng. Soc. 30(6), 396–406 (1982)

    Google Scholar 

  23. Jensen, K.: The Timbre Model - Discrimination and Expression. In: Proceedings of the Mosart Midterm Meeting, Esbjerg, Denmark (2002)

    Google Scholar 

  24. Hoffman, M., Cook, P.: The Featsynth Framework for Feature-Based Synthesis: Design and Applications. In: Proc. Int. Comp. Music Conf (ICMC 2007), Copenhaguen, Denmark, vol. 2, pp. 184–187 (2007)

    Google Scholar 

  25. Risset, J.-C., Wessel, D.L.: Exploration of Timbre by Analysis and Synthesis. In: Psychology of Music, 2nd edn., Academic Press, London (1999)

    Google Scholar 

  26. Barthet, M., Depalle, P., Kronland-Martinet, R., Ystad, S.: From Performer to Listener: an Analysis of Timbre Variations. J. Acoust. Soc. Am. (under revision)

    Google Scholar 

  27. Guillemain, P.: A Digital Synthesis Model of Double-reed Wind Instruments. Eurasip Journal on Applied Signal Processing, Special Issue on Model-based Sound Synthesis 7, 990–1000 (2004)

    Google Scholar 

  28. Zwicker, E., Fastl, H.: Psychoacoustics, Facts and Models. Springer, Heidelberg (1990)

    Google Scholar 

  29. Barthet, M., Kronland-Martinet, R., Ystad, S.: Improving Musical Expressiveness by Time-Varying Brightness Shaping, http://www.lma.cnrs-mrs.fr/~kronland/cmmr2007/cmmr2007.html

  30. Loureiro, M.A., de Paula, H.B., Yehia, H.C.: Timbre Classification of a Single Instrument. In: ISMIR 2004 5th International Conference on Music Information Retrieval (Barcelona, Spain), Audiovisual Institute, Universitat Pompeu Fabra (2004)

    Google Scholar 

  31. Risset, J.-C.: Computer Study of Trumpet Tones. J. Acoust. Soc. Am. 38(912) (1965)

    Google Scholar 

  32. Fritz, C., Wolfe, J.: Acoustic Impedance Measurement of the Clarinet Players Airway. In: CFA/DAGA 2004, Strasbourg, pp. 101–102 (2004)

    Google Scholar 

  33. Guillemain, P.: Some Roles of the Vocal Tract in Clarinet Breath Attacks: Natural Sounds Analysis and Model-Based Synthesis. J. Acoust. Soc. Am. 121(4), 2396–2406 (2007)

    Article  Google Scholar 

  34. Barthet, M., Guillemain, P., Kronland-Martinet, R., Ystad, S.: On the Relative Influence of Even and Odd Harmonics in Clarinet Timbre. In: Proc. Int. Comp. Music Conf (ICMC 2005), Barcelona, Spain, pp. 351–354 (2005)

    Google Scholar 

  35. Barthet, M., Kronland-Martinet, R., Ystad, S.: Consistency of Timbre Patterns in Expressive Music Performance. In: Proc. 9th Int. Conf. on Digital Audio Effects (DAFx 2006), Montreal, Quebec, Canada, pp. 19–24 (2006)

    Google Scholar 

  36. Wanderley, M.: Quantitative Analysis of Non-Obvious Performer Gestures. In: Gesture and Sign Language in Human-Computer Interaction: International Gesture Workshop, p. 241. Springer, Berlin (2002)

    Chapter  Google Scholar 

  37. Aramaki, M., Kronland-Martinet, R.: Analysis-Synthesis of Impact Sounds by Real-Time Dynamic Filtering. IEEE Trans. on Acoust., Speech, and Sig. Proc. 14(2), 695–705 (2006)

    Article  Google Scholar 

  38. Goldfarb, D.: A Family of Variable Metric Updates Derived by Variational Means. Mathematics of Computing 24, 23–26 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  39. Dillon, W.R., Goldstein, M.: Multivariate Analysis. Wiley series in probability and mathematical statistics. John Wiley & Sons, New York (1984)

    MATH  Google Scholar 

  40. Siegel, S., John Castellan Jr., N.: Non Parametric Statistics for the Behavioral Sciences. In: Measures of Association and their Tests of Significance, 2nd edn., p. 272. McGraw-Hill International Editions (1988)

    Google Scholar 

  41. Farlex: The free dictionary, http://www.thefreedictionary.com

  42. Faure, A.: Des sons aux mots, comment parle-t-on du timbre musical ? PhD thesis, École des Hautes Etudes en Sciences Sociales (2000)

    Google Scholar 

  43. Whybrew, W.K.: Measurement and Evaluation in Music, p. 63. William C. Brown Company Publishers, Dubuque (1962)

    Google Scholar 

  44. Abeles, H.F.: Development and Validation of a Clarinet Performance Adjudication Scale. Journal of Research in Music Education 21(3), 246–255 (1973)

    Article  Google Scholar 

  45. Gabrielsson, A., Lindstrom, B.: Perceived Sound Quality of High-Fidelity Loudspeakers. J. Audio Eng. Soc. 33(1), 33–53 (1985)

    Google Scholar 

  46. Susini, P., McAdams, S.: Effet de Récence dans une Tâche de Jugement de la Sonie. In: 5ème Congrès français d’acoustique, Lausanne, Suisse (2000)

    Google Scholar 

  47. Wessel, D.L.: Timbre Space as a Musical Control Structure. Computer Music Journal 3(2), 45–52 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Richard Kronland-Martinet Sølvi Ystad Kristoffer Jensen

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barthet, M., Kronland-Martinet, R., Ystad, S. (2008). Improving Musical Expressiveness by Time-Varying Brightness Shaping. In: Kronland-Martinet, R., Ystad, S., Jensen, K. (eds) Computer Music Modeling and Retrieval. Sense of Sounds. CMMR 2007. Lecture Notes in Computer Science, vol 4969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85035-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85035-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85034-2

  • Online ISBN: 978-3-540-85035-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics