Music Cognition: Learning, Perception, Expectations

  • Barbara Tillmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4969)


Research in music cognition domain has shown that non musician listeners have implicit knowledge about the Western tonal musical system. This knowledge, acquired by mere exposure to music in everyday life, influences perception of musical structures and allows developing expectations for future incoming events. Musical expectations play a role for musical expressivity and influence event processing: Expected events are processed faster and more accurately than less-expected events and this influence extends to the processing of simultaneously presented visual information. Studying implicit learning of auditory material in the laboratory allows us to further understand this cognitive capacity (i.e., at the origin of tonal acculturation) and its potential application to the learning of new musical systems and new musical expectations. In addition to behavioral studies on cognitive processes in and around music perception, computational models allow simulating learning, representation and perception of music for non musician listeners.


Implicit Learning Priming Paradigm Mere Exposure Music Perception Musical Piece 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Palmer, C.: Sequence memory in music performance. Current Directions in Psychological Science 14, 247–250 (2005)CrossRefGoogle Scholar
  2. 2.
    Repp, B.H.: Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review 12, 969–992 (2005)Google Scholar
  3. 3.
    Stevens, C., Byron, T.: Universals in music processing. In: Hallmam, C.T. (ed.) Oxford Handbook of Music Psychology. Oxford (2008)Google Scholar
  4. 4.
    Dowling, W.J., Harwood, D.L.: Music Cognition. Academic Press, Orlando (1986)Google Scholar
  5. 5.
    Francès, R.: La perception de la musique, 2nd edn. Vrin, Paris (1958)Google Scholar
  6. 6.
    Krumhansl, C.L.: Cognitive foundations of musical pitch. Oxford University Press, New York (1990)Google Scholar
  7. 7.
    Krumhansl, C.L.: The psychological representation of musical pitch in a tonal context. Cognitive Psychology 11(3), 346–374 (1979)CrossRefGoogle Scholar
  8. 8.
    Bharucha, J.J.: Anchoring effects in music: The resolution of dissonance. Cognitive Psychology 16(4), 485–518 (1984)CrossRefGoogle Scholar
  9. 9.
    Budge, H.: A study of chord frequencies. Teacher College (1943)Google Scholar
  10. 10.
    Bigand, E., Poulin-Charronnat, B.: Are we all experienced listeners? Cognition 100, 100–130 (2006)CrossRefGoogle Scholar
  11. 11.
    Tillmann, B., Bharucha, J.J., Bigand, E.: Implicit learning of tonality: a self-organizing approach. Psychol Rev. 107(4), 885–913 (2000)CrossRefGoogle Scholar
  12. 12.
    Hébert, S., Peretz, I., Gagnon, L.: Perceiving the tonal ending of tune excerpts: The roles of pre-existing representation and musical expertise. Canadian Journal of Experimental Psychology 49, 193–209 (1995)CrossRefGoogle Scholar
  13. 13.
    Bartlett, J.C., Dowling, W.J.: Recognition of transposed melodies: a key-distance effect in developmental perspective. J. Exp. Psychol. Hum. Percept. Perform 6(3), 501–515 (1980)CrossRefGoogle Scholar
  14. 14.
    Cuddy, L.L., Thompson, W.F.: Perceived key movement in four-voice harmony and single voices. Music Perception 9, 427–438 (1992)Google Scholar
  15. 15.
    Bigand, E.: Perceiving musical stability: the effect of tonal structure, rhythm, and musical expertise. J. Exp. Psychol. Hum. Percept. Perform 23(3), 808–822 (1997)CrossRefGoogle Scholar
  16. 16.
    Bharucha, J.J., Krumhansl, C.L.: The representation of harmonic structure in music: hierarchies of stability as a function of context. Cognition 13(1), 63–102 (1983)CrossRefGoogle Scholar
  17. 17.
    Dowling, W.J.: Scale and contour: Two components of a theory of memory for melodies. Psychological Review 85(4), 341–354 (1978)CrossRefGoogle Scholar
  18. 18.
    Tillmann, B., Bigand, E., Madurell, F.: Local versus global processing of harmonic cadences in the solution of musical puzzles. Psychological Research/Psychologische For-schung 61(3), 157–174 (1998)CrossRefGoogle Scholar
  19. 19.
    Meyer, L.B.: Emotion and Meaning in Music. University of Chicago Press, Chicago (1956)Google Scholar
  20. 20.
    Carlsen, C.: Musical expectancy: Some perspectives. Council for Research in Music Education 71, 4–14 (1982)Google Scholar
  21. 21.
    Carlsen, C.: Some factors which influence melodic expectancy. Psychomusicology 1(1), 12–29 (1981)Google Scholar
  22. 22.
    Schmuckler, M.A.: The performance of global expectations. Psychomusicology 9, 122–147 (1990)Google Scholar
  23. 23.
    Schmuckler, M.A.: Expectation in music: Investigation of melodic and harmonic processes. Music Perception 7, 109–150 (1989)Google Scholar
  24. 24.
    Schmuckler, M.A., Boltz, M.G.: Harmonic and rhythmic influences on musical expectancy. Percept Psychophys 56(3), 313–325 (1994)Google Scholar
  25. 25.
    Neely, J.H.: Semantic priming effects in visual word recognition: A selective review of current findings and theories. In: Besner, D., Humphreys, G.W. (eds.) Basic processes in reading: Visual word recognition, pp. 264–336. Lawrence Erlbaum, Mahwah (1991)Google Scholar
  26. 26.
    Tillmann, B.: Implicit investigations of tonal knowledge in nonmusician listeners. Annals of the New York Academy of Sciences 1060, 100–110 (2005)CrossRefGoogle Scholar
  27. 27.
    Bharucha, J.J., Stoeckig, K.: Reaction time and musical expectancy: priming of chords. J. Exp. Psychol. Hum. Percept. Perform 12(4), 403–410 (1986)CrossRefGoogle Scholar
  28. 28.
    Bigand, E., Pineau, M.: Global context effects on musical expectancy. Percept Psycho-phys 59(7), 1098–1107 (1997)Google Scholar
  29. 29.
    Tillmann, B., Bharucha, J.J.: Effect of harmonic relatedness on the detection of temporal asynchronies. Perception & Psychophysics 64(4), 640–649 (2002)Google Scholar
  30. 30.
    Bigand, E., et al.: The effect of harmonic context on phoneme monitoring in vocal music. Cognition 8(1), B11–B20 (2001)CrossRefGoogle Scholar
  31. 31.
    Tillmann, B., et al.: Influence of harmonic context on musical timbre processing. European Journal of Cognitive Psychology 18, 343–358 (2005)CrossRefGoogle Scholar
  32. 32.
    Poulin-Charronnat, B., et al.: Musical structure modulates semantic priming in vocal music. Cognition 94, B67–B78 (2005)CrossRefGoogle Scholar
  33. 33.
    Tillmann, B., Bigand, E., Pineau, M.: Effects of global and local contexts on harmonic expectancy. Music Perception 16(1), 99–117 (1998)Google Scholar
  34. 34.
    Bigand, E., et al.: Effect of global structure and temporal organization on chord processing. Journal of Experimental Psychology: Human Perception and Performance 25(1), 184–197 (1999)CrossRefGoogle Scholar
  35. 35.
    Bigand, E., et al.: Cognitive versus sensory components in harmonic priming effects. Journal of Experimental Psychology: Human Perception and Performance 29(1), 159–171 (2003)CrossRefGoogle Scholar
  36. 36.
    Tillmann, B., et al.: Tonal centers and expectancy: facilitation or inhibition of chords at the top of the harmonic hierarchy? Journal of Experimental Psychology: Human Perception & Performance (in press)Google Scholar
  37. 37.
    Marmel, F., Tillmann, B., Dowling, W.J.: Tonal expectations influence pitch perception (manuscript submitted for publication, 2007)Google Scholar
  38. 38.
    McAdams, S.: Contraintes psychologiques sur les dimensions porteuses de formes en musique. In: McAdams, S., Deliege, I. (eds.) La musique et les sciences cognitives, pp. 257–284. Bruxelles, Mardaga (1989)Google Scholar
  39. 39.
    Boltz, M.G.: The generation of temporal and melodic expectancies during musical listening. Perception & Psychophysics 53, 585–600 (1993)Google Scholar
  40. 40.
    Tillmann, B., Lebrun-Guillaud, G.: Influence of tonal and temporal expectations on chord processing and on completion judgments of chord sequences. Psychological Research 70, 345–358 (2006)CrossRefGoogle Scholar
  41. 41.
    Peretz, I., Kolinsky, R.: Boundaries of separability between melody and rhythm in music discrimination: A neuropsychological perspective. Quarterly Journal of Experimental Psychology 46A, 301–327 (1993)Google Scholar
  42. 42.
    Boltz, M.G.: Some structural determinants of melody recall. Mem Cognit 19(3), 239–251 (1991)Google Scholar
  43. 43.
    Boltz, M.G.: Perceiving the end: Effects of tonal relationships on melodic completion. Journal of Experimental Psychology: Human Perception and Performance 15, 749–761 (1989)CrossRefGoogle Scholar
  44. 44.
    Palmer, C., Krumhansl, C.L.: Independent temporal and pitch structures in determination of musical phrases. J. Exp. Psychol. Hum. Percept. Perform 13(1), 116–126 (1987)CrossRefGoogle Scholar
  45. 45.
    Bigand, E.: The influence of implicit harmony, rhythm and musical training on the abstraction of ”tension-relaxation schemes” in a tonal musical phrase. Contemporary Music Review 9, 128–139 (1993)CrossRefGoogle Scholar
  46. 46.
    Jones, M.R., Boltz, M.: Dynamic attending and responses to time. Psychological Review 96, 459–491 (1989)CrossRefGoogle Scholar
  47. 47.
    Dowling, W.J., Lung, K.M., Herrbold, S.: Aiming attention in pitch and time in the perception of interleaved melodies. Percept Psychophys 41(6), 642–656 (1987)Google Scholar
  48. 48.
    Lerdahl, F., Jackendoff, R.: A generative Theory of Tonal Music, vol. 368. The MIT press, Cambridge (1983)Google Scholar
  49. 49.
    Peretz, I., Morais, J.: La musique et la modularité. In: McAdams, S., Deliege, I. (eds.) La musique et les sciences cognitives, pp. 393–414. Bruxelles, P. Mardaga (1989)Google Scholar
  50. 50.
    Pfordresher, P.Q.: The role of melodic and rhythmic accents in musical structure. Music Perception 20(4), 431–464 (2003)CrossRefGoogle Scholar
  51. 51.
    Hoch, L., Tillmann, B.: Effect of tonal relatedness on spoken syllable identification to the contralateral ear (manuscript in preparation)Google Scholar
  52. 52.
    Escoffier, N., Tillmann, B.: The tonal function of a task-irrelevant chord modulates speed of visual processing. Cognition (in press)Google Scholar
  53. 53.
    Jones, M.R.: Dynamic pattern structures in music: Recent theory and research. Perception and Psychophysics 41, 621–634 (1987)Google Scholar
  54. 54.
    Meyer, L.B.: On rehearing music. In: Meyer, L.B. (ed.) Music, the arts and ideas, pp. 42–53. Chicago University Press, Chicago (1967)Google Scholar
  55. 55.
    Jackendoff, R.: Musical parsing and musical affect. Music Perception 9, 199–230 (1991)Google Scholar
  56. 56.
    Justus, T.C., Bharucha, J.J.: Modularity in musical processing: the automaticity of harmonic priming. J. Exp. Psychol. Hum. Percept. Perform 27(4), 1000–1011 (2001)CrossRefGoogle Scholar
  57. 57.
    Tillmann, B., Bigand, E.: Musical priming: Schematic expectations resist repetition priming. In: 8th International Conference of Music Perception and Cognition. Evanston, Chicago (2004)Google Scholar
  58. 58.
    Faita, F., Besson, M.: Electrophysiological index of musical expectancy: Is there a repetition effect on the event-related potentials associated with musical incongruities? In: Third International Conference for Music Perception and Cognition, ESCOM, Liege (1994)Google Scholar
  59. 59.
    Lerdahl, F.: Two ways which music relates the world. Music theory spectrum 25, 367–373 (2003)CrossRefGoogle Scholar
  60. 60.
    Shepard, R.N.: Geometrical approximations to the structure of musical pitch. Psychol. Rev. 89(4), 305–333 (1982)CrossRefGoogle Scholar
  61. 61.
    Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89(4), 334–368 (1982)CrossRefGoogle Scholar
  62. 62.
    Lerdahl, F.: Tonal pitch space. Music Perception 5(3), 315–349 (1988)Google Scholar
  63. 63.
    Lerdahl, F.: Pitch-space journeys in two Chopin Preludes. In: Jones, M.R., Holleran, S. (eds.) Cognitive bases of musical communication, APA, pp. 171–191 (1991)Google Scholar
  64. 64.
    Bharucha, J.J.: Music cognition and perceptual facilitation: A connectionist framework. Music Perception 5(1), 1–30 (1987)Google Scholar
  65. 65.
    McClelland, J.L., Rumelhart, D.E.: An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review 86, 287–330 (1981)Google Scholar
  66. 66.
    Seidenberg, M.S., McClelland, J.L.: A distributed, developmental model of word recognition and naming. Psychological Review 96, 523–568 (1989)CrossRefGoogle Scholar
  67. 67.
    Grossberg, S.: Some networks that can learn, remember and reproduce any number of complicated space-time patterns. Studies in Applied Mathematics 49, 135–166 (1970)zbMATHMathSciNetGoogle Scholar
  68. 68.
    Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)Google Scholar
  69. 69.
    Rumelhart, D.E., Zipser, D.: Feature discovery by competitive learning. Cognitive Science 9, 75–112 (1985)CrossRefGoogle Scholar
  70. 70.
    von der Malsberg, C.: Self-organizing of orientation sensitive cells in the striate cortex. Kybernetic 14, 85–100 (1973)CrossRefGoogle Scholar
  71. 71.
    Parncutt, R.: Harmony: A psychoacoustical approach. Springer, Heidelberg (1989)Google Scholar
  72. 72.
    Krumhansl, C.L., Bharucha, J.J., Kessler, E.J.: Perceived harmonic structures of chords in three related keys. Journal of Experimental Psychology: Human Perception and Performance 8, 24–36 (1982)CrossRefGoogle Scholar
  73. 73.
    Patel, A.D., et al.: Processing syntactic relations in language and music: an event-related potential study. J. Cogn. Neurosci. 10(6), 717–733 (1998)CrossRefGoogle Scholar
  74. 74.
    Tekman, H.G., Bharucha, J.J.: Implicit knowledge versus psychoacoustic similarity in priming of chords. Journal of Experimental Psychology: Human Perception and Performance 24(1), 252–260 (1998)CrossRefGoogle Scholar
  75. 75.
    Seger, C.A.: Implicit learning. Psychological Bulletin 115, 163–169 (1994)CrossRefGoogle Scholar
  76. 76.
    Altmann, G.T.M., Dienes, Z., Goode, A.: Modality independence of implicitly learned grammatical knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition 21(4), 899–912 (1995)CrossRefGoogle Scholar
  77. 77.
    Reber, A.S.: Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior 6, 855–863 (1967)CrossRefGoogle Scholar
  78. 78.
    Reber, A.S.: Implicit learning and tacit knowledge. Journal of Experimental Psychology: General 118, 219–235 (1989)CrossRefGoogle Scholar
  79. 79.
    Saffran, J.R., Newport, E.L., Aslin, R.N.: Word segmentation: The role of distributional cues. Journal of Memory and Language 35(4), 606–621 (1996)CrossRefGoogle Scholar
  80. 80.
    Thiessen, E.D., Saffran, J.R.: When cues collide: use of stress and statistical cues to word boundaries by 7- to 9-month-old infants. Developmental Psychology 39(4), 706–716 (2003)CrossRefGoogle Scholar
  81. 81.
    Johnson, E.K., Jusczyk, P.W.: Word segmentation by 8-month-olds: When speech cues count more than statistics. Journal of Memory and Language 44(4), 548–567 (2001)CrossRefGoogle Scholar
  82. 82.
    Tillmann, B., McAdams, S.: Implicit Learning of musical timbre sequences: statistical regularities confronted with acoustical (dis)similarities. Journal of Experimental Psychology: Learning, Memory & Cognition 30, 1131–1142 (2004)CrossRefGoogle Scholar
  83. 83.
    McAdams, S., et al.: Perceptual scaling of synthesized musical timbres: Common dimensions, specificities and latent subject classes. Psychological Research 58, 177–192 (1995)CrossRefGoogle Scholar
  84. 84.
    Grey, J.M.: Multidimensional perceptual scaling of musical timbres. Journal of the Acoustical Society of America 61, 1270–1277 (1977)CrossRefGoogle Scholar
  85. 85.
    Krumhansl, C.L.: Why is musical timbre so hard to understand? In: Nielzen, S., Olsson, O. (eds.) Structure and perception of electroacoustic sound and music, pp. 43–54. Excerpta medica, Amsterdam (1989)Google Scholar
  86. 86.
    Samson, S., Zatorre, R.J., Ramsay, J.O.: Multidimensional scaling of synthetic musical timbre: perception of spectral and temporal characteristics. Canadian Journal of Experimental Psychology 51, 307–315 (1997)CrossRefGoogle Scholar
  87. 87.
    Ayari, M., McAdams, S.: Aural analysis of Arabic improvised instrumental music (tagsim). Music Perception 21, 159–216 (2003)CrossRefGoogle Scholar
  88. 88.
    Bigand, E., D’Adamo, D.A., Poulin, B.: The implicit learning of twelve-tone music. In: ESCOP 2003, Granada, Spain (2003)Google Scholar
  89. 89.
    Bigand, E., Perruchet, P., Boyer, M.: Implicit learning of an artificial grammar of musical timbres. Cahiers de Psychologie Cognitive/Current Psychology of Cognition 17(3), 577–600 (1998)Google Scholar
  90. 90.
    Howard, J.H.J., Ballas, J.A.: Acquisition of acoustic pattern categories by exemplar observation. Organization, Behavior and Human Performance 30, 157–173 (1982)CrossRefGoogle Scholar
  91. 91.
    Howard, J.H.J., Ballas, J.A.: Syntactic and semantic factors in the classification of non-speech transient patterns. Perception & Psychophysics 28(5), 431–439 (1980)Google Scholar
  92. 92.
    Poulin-Charronnat, B., Tillmann, B., Perruchet, P.: Implicit learning of artificial grammar of tones: direct and indirect judgments (manuscript in preparation)Google Scholar
  93. 93.
    Tillmann, B., Poulin-Charronnat, B.: Auditory expectations for newly acquired material: Combining implicit learning and priming paradigms (manuscript in preparation)Google Scholar
  94. 94.
    Tillmann, B., Marmel, F.: Testing musical expectations at various positions inside a chord sequence: An adaptation of the musical priming paradigm (manuscript submitted for publication, 2007)Google Scholar
  95. 95.
    Stevens, C.: Cross-cultural studies of musical pitch and time. Acoustical Science and Technology 25, 433–438 (2004)CrossRefGoogle Scholar
  96. 96.
    Kessler, E.J., Hansen, C., Shepard, R.N.: Tonal schemata in the perception of music in Bali and in the West. Music Perception 2, 131–165 (1994)Google Scholar
  97. 97.
    Castellano, M.A., Bharucha, J.J., Krumhansl, C.L.: Tonal hierarchies in the music of North India. Journal of Experimental Psychology: General 113, 394–412 (1984)CrossRefGoogle Scholar
  98. 98.
    Krumhansl, C.L., et al.: Cross-cultural music cognition: cognitive methodology applied to North Sami yoiks. Cognition 76(1), 13–58 (2000)CrossRefGoogle Scholar
  99. 99.
    Krumhansl, C.L., et al.: Melodic expectation in Finnish spiritual folk hymns: Convergence of statistical, behavioral, and computational approaches. Music Perception 17, 151–195 (1999)Google Scholar
  100. 100.
    Povel, D.-J., Essens, P.J.: Perception of temporal patterns. Music Perception 2, 411–440 (1985)Google Scholar
  101. 101.
    Keller, P.E., Burnham, D.K.: Musical meter in attention to multipart rhythm. Music Perception 22, 629–661 (2005)CrossRefGoogle Scholar
  102. 102.
    London, J.: Hearing in time. Oxford University Press, New York (2004)Google Scholar
  103. 103.
    Hannon, E.E., Trehub, S.E.: Metrical categories in infancy and adulthood. Psychological Science 16, 48–55 (2005)CrossRefGoogle Scholar
  104. 104.
    Hannon, E.E., Trehub, S.E.: Tuning in to musical rhythms: Infants learn more readily than adults. Proceedings of the National Academy of Sciences of the United States of America 102, 12639–12643 (2005)CrossRefGoogle Scholar
  105. 105.
    Bharucha, J.J., Olney, K.L.: Tonal cognition, artificial intelligence and neural nets. Contemporary Music Review 4, 341–356 (1989)CrossRefGoogle Scholar
  106. 106.
    Schoenberg, A.: Style and idea: Selected writings of Arnold Schonberg. Farber and Farber, London (1941)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Barbara Tillmann
    • 1
  1. 1.Sensory Neurosciences, Behavior and Cognition Laboratory, CNRS-UMR 5020, IFR 19University Claude Bernard Lyon 1Lyon cedex 07France

Personalised recommendations