Retrieving and Recreating Musical Form

  • Ole Kühl
  • Kristoffer Jensen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4969)

Abstract

This paper discusses musical form from a cognitive and a computational viewpoint. While several time-windows exist in the brain, we here put emphasis on the superchunks of up to more than 30 seconds lengths. We compare a strategy for auditive analysis based on human cognition with a strategy for automatic analysis based on feature extraction. The feature extraction is based on the musical features rhythm, timbre and chroma. We then consider the possible consequences of this approach for the development of music generating software.

Keywords

Music retrieval human cognition chunking feature extraction music generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Trevarthen, C.: Musicality and the Intrinsic Motor Pulse. Musicae Scientiae, 155–211 (special issue, 2000)Google Scholar
  2. 2.
    Snyder, B.: Music and Memory. An Introduction. The MIT Press, Cambridge (2000)Google Scholar
  3. 3.
    Godøy, R.I.: Gestural-Sonorous Objects: embodied extensions of Schaeffer’s conceptual apparatus. Organised Sound 11(2), 149–157 (2006)CrossRefGoogle Scholar
  4. 4.
    Kühl, O.: Musical Semantics. Peter Lang, Bern (2007)Google Scholar
  5. 5.
    Walters, J.: Jamie Walters, Atlantic (1994)Google Scholar
  6. 6.
    Barenboim, D.: Mozart: Complete Piano Sonatas and Variations. EMI Classics (1991)Google Scholar
  7. 7.
    Gordon, J.W.: The perceptual attack time of musical tones. J. Acoust. Soc. Am. 82(2) (July 1987)Google Scholar
  8. 8.
    Jensen, K.: A Causal Rhythm Grouping. In: Wiil, U.K. (ed.) CMMR 2004. LNCS, vol. 3310, pp. 83–95. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Hermansky, H.: Perceptual linear predictive (plp) analysis of speech. J. Acoust. Soc. Am. 87(4), 131–134 (1990)CrossRefGoogle Scholar
  10. 10.
    Jensen, K.: Multiple scale music segmentation using rhythm, timbre and harmony. EURASIP Journal on Applied Signal Processing, Special issue on Music Information Retrieval Based on Signal Processing (2006)Google Scholar
  11. 11.
    Sekey, A., Hanson, B.A.: Improved 1-bark bandwidth auditory filter. J. Acoust. Soc. Am. 75(6) (1984)Google Scholar
  12. 12.
    Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987)CrossRefGoogle Scholar
  13. 13.
    Foote, J.: Automatic Audio Segmentation using a Measure of Audio Novelty. In: Proceedings of IEEE International Conference on Multimedia and Expo., July 30, vol. 1, pp. 452–455 (2000)Google Scholar
  14. 14.
    Jensen, K., Xu, J., Zachariasen, M.: Rhythm-based segmentation of Popular Chinese Music. In: Proceedings of the ISMIR, London, UK, pp. 374–380 (2005)Google Scholar
  15. 15.
    Gray, R.M., Davidson, L.D.: An introduction to statistical signal processing. Cambridge University Press, Cambridge (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ole Kühl
    • 1
  • Kristoffer Jensen
    • 1
  1. 1.Aalborg University EsbjergEsbjergDenmark

Personalised recommendations