Multimodal Design for Enactive Toys

  • Amalia de Götzen
  • Laca Mion
  • Federico Avanzini
  • Stefania Serafin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4969)

Abstract

In this paper we will investigate how non–visual senses can be used in toys to enhance and enrich the play experience of all children, while favoring accessibility and inclusion of visually-impaired children. Previous research has shown that – especially for young children developing sensory-motor skills – exploration and play are two tightly linked activities: everything is new and needs to be “investigated” and playful behaviors emerge from active exploration. We will propose a new approach in designing and creating objects that elicit this type of behavior and encourage exploration by providing real–time dynamic, haptic, tactile, auditory, and even olfactory feedback depending on children’s gestures, movements, and emitted sounds. We believe that this design paradigm is highly innovative with respect to previous research and existing products – whose interaction is very often based on static feedback. Interactive and dynamic feedback is intrinsically more engaging and allows a variety of quality learning patterns.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Noe, A.: Action in perception. MIT Press, Cambridge (2005)Google Scholar
  2. 2.
    Varela, F., Thompson, E., Rosch, E.: The Embodied Mind. MIT Press, Cambridge (1991)Google Scholar
  3. 3.
    Luciani, A., Florens, J., Castagne, N.: From action to sound: a challenging perspective for haptics. In: Workshop on Enactive Interfaces (Enactive 2005), Pisa, Italy (January 2005)Google Scholar
  4. 4.
    Picard, R.: Affective computing. MIT Press, Cambridge (1997)Google Scholar
  5. 5.
    Dore, J.: Feeling, form, and intention in the baby’s transition to language. In: Golinkoff, R.M. (ed.) The transition from prelinguistic to linguistic communication (1983)Google Scholar
  6. 6.
    Sabbadini, A.: On sounds, children, identity and a ‘quite unmusical’ man. Br. J. Psychother. 14(2), 189–196 (1997)CrossRefGoogle Scholar
  7. 7.
    De Poli, G., Avanzini, F., Rodà, A., Mion, L., D’Incà, G., Trestino, C., Pirrò, C., Luciani, A., Castagne, A.: Towards a multi-layer architecture for multi-modal rendering of expressive actions. In: Proceedings of 2nd International Conference on Enactive Interfaces (Enactive 2005), Genova, Italy (November 2005)Google Scholar
  8. 8.
    Lederman, S., Klatzky, R., Morgan, T., Hamilton, C.: Integrating multimodal information about surface texture via a probe: relative contribution of haptic and touch-produced sound sources. In: Symp. Haptic interfaces for virtual environment and Teleoperator Systems (HAPTICS 2002), Orlando, FL (2002)Google Scholar
  9. 9.
    Bresciani, J.P., Ernst, M.O., Drewing, K., Bouyer, G., Maury, V., Kheddar, A.: Feeling what you hear: auditory signals can modulate tactile tap perception. Exp. Brain Research 162(2), 172–180 (2005)CrossRefGoogle Scholar
  10. 10.
    Adrien, J.M.: The missing link: Modal synthesis. In: De Poli, G., Piccialli, A., Roads, C. (eds.) Representations of Musical Signals, pp. 269–297. MIT Press, Cambridge (1991)Google Scholar
  11. 11.
    van den Doel, K., Pai, D.K.: The sounds of physical shapes. Presence: Teleoperators and Virtual Environment 7(4), 382–395 (1998)CrossRefGoogle Scholar
  12. 12.
    DiFilippo, D., Pai, D.K.: The AHI: An audio and haptic interface for contact interactions. In: Proc. ACM Symp. on User Interface Software and Technology (UIST 2000), San Diego, CA (November 2000)Google Scholar
  13. 13.
    Avanzini, F., Crosato, P.: Integrating physically-based sound models in a multimodal rendering architecture. Comp. Anim. Virtual Worlds 17(3-4), 411–419 (2006)CrossRefGoogle Scholar
  14. 14.
    Seymour, P.: The Children’s Machine: Rethinking School in the Age of the Computer. Basic Books, New York (1993)Google Scholar
  15. 15.
    Wallich, P.: Mindstorms: not just a kid’s toy. IEEE Spectrum 38(9), 52–57 (2001)CrossRefGoogle Scholar
  16. 16.
    Hengeveld, B., Hummels, C., Voort, R., van Balkom, H., de Moor, J.: Designing for diversity: developing complex adaptive tangible products. In: Proceedings of the 1st International Conference on Tangible and embedded interaction, pp. 155–158 (2007)Google Scholar
  17. 17.
    Magerkurth, C., Engelke, T., Memisoglu, M.: Augmenting the virtual domain with physical and social elements. In: Proceedings of the International Conference on Advancements in Computer Entertainment Technology, pp. 163–172 (2004)Google Scholar
  18. 18.
    Montemayor, J., Druin, A., Chipman, L., Farber, A., Guha, M.: Sensing, storytelling, and children: Putting users in control. Technical report, University of Maryland, Computer Science Department (2004)Google Scholar
  19. 19.
    Konkel, M., Leong, V., Ullmer, B., Hu, C.: Tagaboo: A collaborative children’s game based on wearable RFID technology. ACM Journal of Ubiquitous Computing 8(5), 382–384 (2004)Google Scholar
  20. 20.
    Itoh, Y., Akinobu, S., Ichida, H., Watanabe, R., Kitamura, Y., Kishino, F.: TSU.MI.KI: stimulating children’s creativity and imagination with interactive blocks. In: Proceedings of the 2nd International Conference on Creating, Connecting and Collaborating through Computing 2004, pp. 62–70 (2004)Google Scholar
  21. 21.
    Nakamura, I., Mori, H.: Play and learning in the digital future. IEEE Micro 19(6), 36–42 (1999)CrossRefGoogle Scholar
  22. 22.
    Garvey, C.: Play. Harvard Univ. Press, Cambridge (1990)Google Scholar
  23. 23.
    Kaltenbrunner, M., Jordà, S., Geiger, G., Alonso, M.: The reacTable*: A collaborative musical instrument. In: Proceedings of the Workshop on Tangible Interaction in Collaborative Environments (TICE), at the 15th International IEEE Workshops on Enabling Technologies (WETICE 2006), Manchester (2006)Google Scholar
  24. 24.
    Hornecker, E., Buur, J.: Getting a grip on tangible interaction: A framework on physical space and social interaction. In: Proceedings of the ACM International Conference on Computer-Human Interaction (CHI 2006), pp. 437–446 (2006)Google Scholar
  25. 25.
    Gaver, W., Bowers, J., Boucher, A., Gellerson, H., Pennington, S., Schmidt, A., Steed, A., Villars, N., Walker, B.: The drift table: designing for ludic engagement. In: Proceedings of the ACM International Conference on Computer-Human Interaction (CHI 2004), Extended abstracts on human factors in computing systems, pp. 885–900 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Amalia de Götzen
    • 1
  • Laca Mion
    • 1
  • Federico Avanzini
    • 1
  • Stefania Serafin
    • 2
  1. 1.Department of Information EngineeringUniversity of Padova 
  2. 2.Medialogy DepartmentAalborg University in CopenhagenDenmark

Personalised recommendations