The Use of Isotropic Imaging and Computed Tomography Reconstructions

  • Alain Vlassenbroek
Part of the Medical Radiology book series (MEDRAD)


With modern multislice computed tomography (CT) scanners, which combine ultrafast acquisition with high spatial resolution, isotropic imaging of the chest can be performed during a short breathold. Adapting the slice thickness, the reconstruction increment, filter, and matrix enable an optimal isotropic visualization of each organ. The very large high-quality 3-dimensional datasets that are then generated require the use of various postprocessing techniques for an improved diagnostic. These tools have become a vital component for the visualization and the interpretation of the large volumetric data and to present the results to the clinicians. New dynamic modes of visualization have recently been introduced to reduce the storage capacity and to improve the workflow and the image quality for any organ interpreted by the user. Despite this gain in information obtained with modern multislice CT scanners, the patient’s dose has not been increased. On the contrary, it has been reduced thanks to the use of automatic dose modulation which adapts the X-ray tube output to maintain adequate dose and image quality when moving to different body regions.


Maximum Intensity Projection Modulation Transfer Function Spiral Compute Tomography Contrast Resolution Reconstruction Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amir O, Braunstein D, Altman A (2003) Dose optimization tool. Proc SPIE Conf 5029:815–821CrossRefGoogle Scholar
  2. Beigelman-Aubry C (2007) Post-processing and display in multislice CT of the chest. JBR–BTR 90:85–88PubMedGoogle Scholar
  3. Bernhardt J, Veit R, Bauer B (1995) Erhebung zur Strahlenexposition der Patienten bei der Rontgendiagnostik. Med Phys 5:33–39Google Scholar
  4. Boone JM, Geraghty EM, Seibert JA, Wootton-Gorges SL (2003) Dose reduction in pediatric CT: a rational approach. Radiology 228:352–360PubMedCrossRefGoogle Scholar
  5. Brix G, Nagel HD, Stamm G et al (2003) Radiation exposure in multi-slice versus single-slice spiral CT: results of a nationwide survey. Eur Radiol 13(8):1979–1991PubMedCrossRefGoogle Scholar
  6. Brooks RA, DiChiro G (1976) Statistical limitations in x-ray reconstructive tomography. Med Phys 3:237–240PubMedCrossRefGoogle Scholar
  7. Droege RT, Morin RL (1982) A practical method to measure the MTF of CT scanner. Med Phys 9(5):758–760PubMedCrossRefGoogle Scholar
  8. Feldman A, Rabotnikov M, Nae Y, Vlassenbroek A (2008) A new concept for acquisition and image reconstruction in ct, aimed to significantly boost the workflow and to improve the image quality. RSNA 2008 abstract SSA21–01Google Scholar
  9. Fleischmann D (2002) Present and future trends in multiple detector-row CT applications: CT angiography. Eur Radiol 12(Suppl 2):11–15CrossRefGoogle Scholar
  10. Flohr T, Schaller S, Stierstorfer K, Bruder H, Ohnesorge B, Schoepf UJ (2005) Multi-detector row CT systems and image-reconstruction techniques. Radiology 235(3):756–773PubMedCrossRefGoogle Scholar
  11. Galanski M, Hidajat N, Maier W, Nagel HD, Schmidt T (2002) Radiation exposure in computed tomography, 4th edn. CTB, HamburgGoogle Scholar
  12. Hoffmann M, Heshui S, Schmid F et al (2004) Noninvasive coronary imaging with MDCT in comparison to invasive conventional coronary angiography: a fast-developing technology. AJR Am J Roentgenol 182(3):601–608PubMedGoogle Scholar
  13. Hu H (1999) Multi-slice helical CT: scan and reconstruction. Med Phys 26(1):5–18PubMedCrossRefGoogle Scholar
  14. Hu H, He HD, Foley WD, Fox SH (2000) Four multidetector-row helical CT: “Image quality and volume coverage speed.” Radiology 215:55–62PubMedGoogle Scholar
  15. Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE, New YorkGoogle Scholar
  16. Kalender WA (2000) Computed tomography: fundamentals, system technology, image quality, applications. Publicis MCD Verlag, MunichGoogle Scholar
  17. Kalender WA, Polacin A, Suss C (1994) A comparison of conventional and spiral CT: an experimental study on the detection of spherical lesions. J Comput Assist 18(2):167–176CrossRefGoogle Scholar
  18. Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U (1999) Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 31(2):110–124PubMedCrossRefGoogle Scholar
  19. Lacrosse M, Trigaux JP, Van Beers BE, Weynants P (1995) 3D spiral CT of the tracheobronchial tree. J Comput Assist Tomogr 19(3):341–347PubMedCrossRefGoogle Scholar
  20. Ley-Zaporozhan J, Ley S, Krummenauer F et al. (2010) Low dose multi-detector CT of the chest (iLEAD Study): Visual ranking of different simulated mAs levels. Eur. J. Radiol. February 2010:73(2):428-33.Google Scholar
  21. McCollough CH (2003) Patient dose in cardiac computed tomography. Herz 28:1–6PubMedCrossRefGoogle Scholar
  22. McCollough CH, Bruesewitz MR, Kofler JM (2006) CT dose reduction and management tools: overview of available options. Radiographics 26:503–512PubMedCrossRefGoogle Scholar
  23. Morgan H (2002) Dose reduction for CT pediatric imaging. Pediatr Radiol 32:724–728PubMedCrossRefGoogle Scholar
  24. Morgan H, Braunstein D (2001) A computed tomography dose index for infants and young children. Med Phys 28:1818Google Scholar
  25. Pappas JN, Donnelly LF, Frush DP (2000) Reduced frequency of sedation of young children with multisection helical CT. Radiology 215:897–899PubMedGoogle Scholar
  26. Poty V, Ferain J, Vlassenbroek A, Defrize L, Coche E (2008) Apport de la filtration dynamique des images dans le suivi oncologique thoraco-abdominal au scanner. J Radiol 89:1493–1494CrossRefGoogle Scholar
  27. Quint LE et al (1995) Stenosis of the central airways: evaluation by using helical CT with multiplanar reconstructions. Radiology 194:871–877PubMedGoogle Scholar
  28. Richenberg JL, Hansell DM (1998) Image processing and spiral CT of the thorax. Br J Radiol 71:708–716PubMedGoogle Scholar
  29. Rossmann K (1969) Point spread function, line-spread function and modulation transfer function: tools for the study of imaging systems. Radiology 93:257–272PubMedGoogle Scholar
  30. Salgado RA, Spinhoven M, De Jongh K, Op de Beeck B, Corthouts B, Parizel PM (2007) Chest MSCT acquisition and injection protocols. JBR–BTR 90:97–99PubMedGoogle Scholar
  31. Schaller S, Wildberger JE, Raupach R, Niethammer M, Kingenbeck-Regn K, Flohr T (2003) Spatial domain filtering for fast modification of the tradeoff between image sharpness and pixel noise in CT. IEEE Trans Med Imaging 22(7):846–853PubMedCrossRefGoogle Scholar
  32. Wang G, Vannier MW (1994) Longitudinal resolution in volumetric x-ray CT – analytic comparison between conventional and helical CT. Med Phys 21:429–433PubMedCrossRefGoogle Scholar
  33. Youn SW, Kim JH, Weon YC et al (2008) Perfusion CT of the brain using 40-mm-wide detector and toggling table technique for initial imaging of acute stroke. AJR Am J Roentgenol 191:120–126CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Philips HealthcareBrusselsBelgium

Personalised recommendations