Aquaporins pp 95-132 | Cite as

Aquaporins in the Kidney

  • Tae-Hwan Kwon
  • Jakob Nielsen
  • Hanne B. Møller
  • Robert A. Fenton
  • Søren Nielsen
  • Jørgen Frøkiær
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 190)

The kidneys are the major determinants of body water and electrolyte composition. Thus, comprehending the mechanisms of water transport is essential to understanding mammalian kidney physiology and water balance. Because of its importance to human health, water permeability has been particularly well characterized in the mammalian kidney (Knepper and Burg 1983). Approximately, 180L day−1 of glomerular filtrate is generated in an average adult human; more than 90% of this is constitutively reabsorbed by the highly water-permeable proximal tubules and descending thin limbs of Henle' loop. The ascending thin limbs and thick limbs are relatively impermeable to water and empty into renal distal tubules and ultimately into the collecting ducts. The collecting ducts are extremely important clinically in water-balance disorders, because they are the chief site of regulated water re-absorption. Basal epithelial water permeability in collecting duct principal cells is low, but the water permeability can become exceedingly high when stimulated with arginine vasopressin (AVP, also known as antidiuretic hormone (ADH)). In this regard, the toad urinary bladder behaves like the collecting duct, and it has served as an important model of vasopressin-regulated water permeability. Stimulation of this epithelium with vasopressin produces an increase in water permeability in the apical membrane, which coincides with the redistribution of intracellular particles to the cell surface (Kachadorian et al. 1975, 1977; Wade and Kachadorian 1988). These particles were believed to contain water channels. The discovery of aquaporin-1 (AQP1) by Agre and colleagues (Preston et al. 1992; Preston and Agre 1991; Smith and Agre 1991) explained the long-standing biophysical question of how water specifically crosses biological membranes, and these studies led to the identification of a whole new family of membrane proteins, the aquaporin water channels. At present, at least eight aquaporins are expressed at distinct sites in the kidney, and four members of this family (AQP1-4) have been demonstrated to play pivotal roles in the physiology and pathophysiology for renal regulation of body water balance. In the present review, we will focus on regulation of renal aquaporins and in particular how regulation of AQP2 takes place. In addition, a number of inherited and acquired conditions characterized by urinary concentration defects as well as common diseases associated with severe water retention are discussed with relation to the role of aquaporins in regulation and dysregulation of renal water transport.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Advani RJ, Bae HR, Bock JB et al (1998) Seven novel mammalian SNARE proteins localize to distinct membrane compartments. J Biol Chem 273:10317–10324PubMedCrossRefGoogle Scholar
  2. Agre P, King LS, Yasui M et al (2002) Aquaporin water channels — from atomic structure to clinical medicine. J Physiol 542:3–16PubMedCrossRefGoogle Scholar
  3. Agre P, Preston GM, Smith BL et al (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 265:F463–F476PubMedGoogle Scholar
  4. Anderson RJ, Gordon JA, Kim J et al (1982) Renal concentration defect following nonoliguric acute renal failure in the rat. Kidney Int 21:583–591PubMedCrossRefGoogle Scholar
  5. Apostol E, Ecelbarger CA, Terris J et al (1997) Reduced renal medullary water channel expression in puromycin aminonucleoside-induced nephrotic syndrome. J Am Soc Nephrol 8:15–24PubMedGoogle Scholar
  6. Arthus MF, Lonergan M, Crumley MJ et al (2000) Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 11:1044–1054PubMedGoogle Scholar
  7. Asahina Y, Izumi N, Enomoto N et al (1995) Increased gene expression of water channel in cir-rhotic rat kidneys. Hepatology 21:169–173PubMedCrossRefGoogle Scholar
  8. Bajjalieh SM, Scheller RH (1995) The biochemistry of neurotransmitter secretion. J Biol Chem 270:1971–1974PubMedCrossRefGoogle Scholar
  9. Barile M, Pisitkun T, Yu MJ et al (2005) Large scale protein identification in intracellu-lar aquaporin-2 vesicles from renal inner medullary collecting duct. Mol Cell Proteomics 4:1095–1106PubMedCrossRefGoogle Scholar
  10. Bartter FC, Schwartz WB (1967) The syndrome of inappropriate secretion of antidiuretic hormone. Am J Med 42:790–806PubMedCrossRefGoogle Scholar
  11. Bedford JJ, Leader JP, Jing R et al (2008) Amiloride restores renal medullary osmolytes in lithium-induced nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 294:F812–F820PubMedCrossRefGoogle Scholar
  12. Bichet DG (1996) Vasopressin receptors in health and disease. Kidney Int 49:1706–1711PubMedCrossRefGoogle Scholar
  13. Bichet DG (2008) Vasopressin receptor mutations in nephrogenic diabetes insipidus. Semin Nephrol 28:245–251PubMedCrossRefGoogle Scholar
  14. Birnbaumer M, Seibold A, Gilbert S et al (1992) Molecular cloning of the receptor for human antidiuretic hormone. Nature 357:333–335PubMedCrossRefGoogle Scholar
  15. Bondy C, Chin E, Smith BL et al (1993) Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc Natl Acad Sci USA 90:4500–4504PubMedCrossRefGoogle Scholar
  16. Boton R, Gaviria M, Batlle DC (1987) Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithium therapy. Am J Kidney Dis 10:329–345PubMedGoogle Scholar
  17. Bouley R, Breton S, Sun T et al (2000) Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest 106:1115–1126PubMedCrossRefGoogle Scholar
  18. Bouley R, Hawthorn G, Russo LM et al (2006) Aquaporin 2 (AQP2) and vasopressin type 2 receptor (V2R) endocytosis in kidney epithelial cells: AQP2 is located in ‘endocytosis-resistant’ membrane domains after vasopressin treatment. Biol Cell 98:215–232PubMedCrossRefGoogle Scholar
  19. Brown D, Verbavatz JM, Valenti G et al (1993a) Localization of the CHIP28 water channel in reabsorptive segments of the rat male reproductive tract. Eur J Cell Biol 61:264–273Google Scholar
  20. Brown EM, Gamba G, Riccardi D et al (1993b) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580CrossRefGoogle Scholar
  21. Bustamante M, Hasler U, Leroy V et al (2008) Calcium-sensing receptor attenuates AVP-induced aquaporin-2 expression via a calmodulin-dependent mechanism. J Am Soc Nephrol 19:109–116PubMedCrossRefGoogle Scholar
  22. Calakos N, Bennett MK, Peterson KE et al (1994) Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263:1146–1149PubMedCrossRefGoogle Scholar
  23. Cheng X, Zhang H, Lee HL et al (2004) Cyclooxygenase-2 inhibitor preserves medullary aquaporin-2 expression and prevents polyuria after ureteral obstruction. J Urol 172:2387–2390PubMedCrossRefGoogle Scholar
  24. Chou CL, Christensen BM, Frische S et al (2004) Non-muscle myosin II and myosin light chain kinase are downstream targets for vasopressin signaling in the renal collecting duct. J Biol Chem 279:49026–49035PubMedCrossRefGoogle Scholar
  25. Chou CL, Ma T, Yang B et al (1998) Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Am J Physiol 274:C549–C554PubMedGoogle Scholar
  26. Chou CL, Yip KP, Michea L et al (2000) Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of ryanodine-sensitive Ca2+ stores and calmodulin. J Biol Chem 275:36839–36846Google Scholar
  27. Christensen BM, Kim YH, Kwon TH et al (2006) Lithium treatment induces a marked proliferation of primarily principal cells in rat kidney inner medullary collecting duct. Am J Physiol Renal Physiol 291:F39–F48PubMedCrossRefGoogle Scholar
  28. Christensen BM, Marples D, Kim YH et al (2004) Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. Am J Physiol Cell Physiol 286:C952–C964PubMedCrossRefGoogle Scholar
  29. Christensen BM, Wang W, Frokiaer J et al (2003) Axial heterogeneity in basolateral AQP2 localization in rat kidney: effect of vasopressin. Am J Physiol Renal Physiol 284:F701–F717PubMedGoogle Scholar
  30. Christensen BM, Zelenina M, Aperia A et al (2000) Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment. Am J Physiol Renal Physiol 278:F29–F42PubMedGoogle Scholar
  31. Christensen BM, Marples D, Jensen UB et al (1998) Acute effects of vasopressin V2-receptor antagonist on kidney AQP2 expression and subcellular distribution. AJP - Renal Physiology 275:F285–F297Google Scholar
  32. Christensen S, Kusano E, Yusufi AN et al (1985) Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats. J Clin Invest 75:1869–1879PubMedCrossRefGoogle Scholar
  33. Cogan E, Abramow M (1986) Inhibition by lithium of the hydroosmotic action of vasopressin in the isolated perfused cortical collecting tubule of the rabbit. J Clin Invest 77:1507–1514PubMedCrossRefGoogle Scholar
  34. Cogan E, Svoboda M, Abramow M (1987) Mechanisms of lithium-vasopressin interaction in rabbit cortical collecting tubule. Am J Physiol 252:F1080–F1087PubMedGoogle Scholar
  35. Coleman RA, Wu DC, Liu J et al (2000) Expression of aquaporins in the renal connecting tubule. Am J Physiol Renal Physiol 279:F874–F883PubMedGoogle Scholar
  36. Crawford JD, Kennedy GC (1959) Chlorothiazid in diabetes insipidus. Nature 183:891–892PubMedCrossRefGoogle Scholar
  37. de Mattia F, Savelkoul PJ, Bichet DG et al (2004) A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracel-lularly retained AQP2-P262L. Hum Mol Genet 13:3045–3056PubMedCrossRefGoogle Scholar
  38. de Seigneux S, Nielsen J, Olesen ET et al (2007) Long-term aldosterone treatment induces decreased apical but increased basolateral expression of AQP2 in CCD of rat kidney. Am J Physiol Renal Physiol 293:F87–F99PubMedCrossRefGoogle Scholar
  39. de Sousa RC, Grosso A (1979) Vanadate blocks cyclic AMP-induced stimulation of sodium and water transport in amphibian epithelia. Nature 279:803–804PubMedCrossRefGoogle Scholar
  40. Deen PM, van Aubel RA, van Lieburg AF et al (1996) Urinary content of aquaporin 1 and 2 in nephrogenic diabetes insipidus. J Am Soc Nephrol 7:836–841PubMedGoogle Scholar
  41. Deen PM, Verdijk MA, Knoers NV et al (1994a) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95CrossRefGoogle Scholar
  42. Deen PM, Weghuis DO, Sinke RJ et al (1994b) Assignment of the human gene for the water channel of renal collecting duct Aquaporin 2 (AQP2) to chromosome 12 region q12→q13. Cytogenet Cell Genet 66:260–262CrossRefGoogle Scholar
  43. DiBona DR (1983) Cytoplasmic involvement in ADH-mediated osmosis across toad urinary bladder. Am J Physiol 245:C297–C307PubMedGoogle Scholar
  44. DiGiovanni SR, Nielsen S, Christensen EI et al (1994) Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci USA 91:8984–8988PubMedCrossRefGoogle Scholar
  45. Ding GH, Franki N, Condeelis J et al (1991) Vasopressin depolymerizes F-actin in toad bladder epithelial cells. Am J Physiol 260:C9–C16PubMedGoogle Scholar
  46. Ecelbarger CA, Chou CL, Lee AJ et al (1998) Escape from vasopressin-induced antidiuresis: role of vasopressin resistance of the collecting duct. Am J Physiol 274:F1161–F1166PubMedGoogle Scholar
  47. Ecelbarger CA, Nielsen S, Olson BR et al (1997) Role of renal aquaporins in escape from vasopressin-induced antidiuresis in rat. J Clin Invest 99:1852–1863PubMedCrossRefGoogle Scholar
  48. Ecelbarger CA, Terris J, Frindt G et al (1995) Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol 269:F663–F672PubMedGoogle Scholar
  49. Echevarria M, Windhager EE, Tate SS et al (1994) Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci USA 91:10997–11001PubMedCrossRefGoogle Scholar
  50. Elkjaer ML, Kwon TH, Wang W et al (2002) Altered expression of renal NHE3, TSC, BSC–1, and ENaC subunits in potassium-depleted rats. Am J Physiol Renal Physiol 283:F1376–F1388PubMedGoogle Scholar
  51. Elkjaer ML, Nejsum LN, Gresz V et al (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol Renal Physiol 281:F1047–F1057PubMedGoogle Scholar
  52. Fenton RA, Brond L, Nielsen S et al (2007) Cellular and subcellular distribution of the type-2 vasopressin receptor in the kidney. Am J Physiol Renal Physiol 293:F748–F760PubMedCrossRefGoogle Scholar
  53. Fenton RA, Moeller HB (2008) Recent discoveries in vasopressin-regulated aquaporin-2 trafficking. Prog Brain Res 170:571–579PubMedCrossRefGoogle Scholar
  54. Fenton RA, Moeller HB, Hoffert JD et al (2008) Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc Natl Acad Sci USA 105:3134–3139PubMedCrossRefGoogle Scholar
  55. Fernandez-Llama P, Andrews P, Ecelbarger CA et al (1998a) Concentrating defect in experimental nephrotic syndrome: altered expression of aquaporins and thick ascending limb Na+ transporters. Kidney Int 54:170–179CrossRefGoogle Scholar
  56. Fernandez-Llama P, Andrews P, Nielsen S et al (1998b) Impaired aquaporin and urea transporter expression in rats with adriamycin-induced nephrotic syndrome. Kidney Int 53:1244–1253CrossRefGoogle Scholar
  57. Fernandez-Llama P, Andrews P, Turner R et al (1999a) Decreased abundance of collecting duct aquaporins in post-ischemic renal failure in rats. J Am Soc Nephrol 10:1658–1668Google Scholar
  58. Fernandez-Llama P, Jimenez W, Bosch-Marce M et al (2000) Dysregulation of renal aquaporins and Na-Cl cotransporter in CCl4-induced cirrhosis. Kidney Int 58:216–228CrossRefGoogle Scholar
  59. Fernandez-Llama P, Turner R, Dibona G et al (1999b) Renal expression of aquaporins in liver cirrhosis induced by chronic common bile duct ligation in rats. J Am Soc Nephrol 10:1950–1957Google Scholar
  60. Flear CT, Gill GV, Burn J (1981) Hyponatraemia: mechanisms and management. Lancet 2:26–31PubMedCrossRefGoogle Scholar
  61. Foster LJ, Yeung B, Mohtashami M et al (1998) Binary interactions of the SNARE proteins syntaxin-4, SNAP23, and VAMP-2 and their regulation by phosphorylation. Biochemistry 37:11089–11096PubMedCrossRefGoogle Scholar
  62. Franki N, Macaluso F, Schubert W et al (1995) Water channel-carrying vesicles in the rat IMCD contain cellubrevin. Am J Physiol 269:C797–C801PubMedGoogle Scholar
  63. Frigeri A, Gropper MA, Turck CW et al (1995) Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes. Proc Natl Acad Sci USA 92:4328–4331PubMedCrossRefGoogle Scholar
  64. Frokiaer J, Christensen BM, Marples D et al (1997) Downregulation of aquaporin-2 parallels changes in renal water excretion in unilateral ureteral obstruction. Am J Physiol 273:F213–F223PubMedGoogle Scholar
  65. Frokiaer J, Marples D, Knepper MA et al (1996) Bilateral ureteral obstruction downregu-lates expression of vasopressin-sensitive AQP-2 water channel in rat kidney. Am J Physiol 270:F657–F668PubMedGoogle Scholar
  66. Frokiaer J, Marples D, Valtin H et al (1999) Low aquaporin-2 levels in polyuric DI +/+ severe mice with constitutively high cAMP-phosphodiesterase activity. Am J Physiol 276:F179–F190PubMedGoogle Scholar
  67. Fujita N, Ishikawa SE, Sasaki S et al (1995) Role of water channel AQP-CD in water retention in SIADH and cirrhotic rats. Am J Physiol 269:F926–F931PubMedGoogle Scholar
  68. Fujiwara TM, Bichet DG (2005) Molecular biology of hereditary diabetes insipidus. J Am Soc Nephrol 16:2836–2846PubMedCrossRefGoogle Scholar
  69. Fushimi K, Sasaki S, Marumo F (1997) Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem 272:14800–14804PubMedCrossRefGoogle Scholar
  70. Fushimi K, Uchida S, Hara Y et al (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552PubMedCrossRefGoogle Scholar
  71. Gheorghiade M, Niazi I, Ouyang J et al (2003) Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure: results from a double-blind, randomized trial. Circulation 107:2690–2696PubMedCrossRefGoogle Scholar
  72. Gines P, Berl T, Bernardi M et al (1998) Hyponatremia in cirrhosis: from pathogenesis to treatment. Hepatology 28:851–864PubMedCrossRefGoogle Scholar
  73. Gong H, Wang W, Kwon TH et al (2003) Reduced renal expression of AQP2, p-AQP2 and AQP3 in haemorrhagic shock-induced acute renal failure. Nephrol Dial Transplant 18:2551–2559PubMedCrossRefGoogle Scholar
  74. Gong H, Wang W, Kwon TH et al (2004) EPO and alpha-MSH prevent ischemia/reperfusion-induced down-regulation of AQPs and sodium transporters in rat kidney. Kidney Int 66: 683–695PubMedCrossRefGoogle Scholar
  75. Gresz V, Kwon TH, Hurley PT et al (2001) Identification and localization of aquaporin water channels in human salivary glands. Am J Physiol Gastrointest Liver Physiol 281:G247–G254PubMedGoogle Scholar
  76. Hanley MJ (1980) Isolated nephron segments in a rabbit model of ischemic acute renal failure. Am J Physiol 239:F17–F23PubMedGoogle Scholar
  77. Harris HW, Jr., Zeidel ML, Jo I et al (1994) Characterization of purified endosomes containing the antidiuretic hormone-sensitive water channel from rat renal papilla. J Biol Chem 269:11993–12000PubMedGoogle Scholar
  78. Hasegawa H, Lian SC, Finkbeiner WE et al (1994a) Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am J Physiol 266:C893–C903Google Scholar
  79. Hasegawa H, Ma T, Skach W et al (1994b) Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem 269:5497–5500Google Scholar
  80. Hayashi M, Sasaki S, Tsuganezawa H et al (1994) Expression and distribution of aquaporin of collecting duct are regulated by vasopressin V2 receptor in rat kidney. J Clin Invest 94:1778–1783PubMedCrossRefGoogle Scholar
  81. Hazama A, Kozono D, Guggino WB et al (2002) Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation. J Biol Chem 277:29224–29230PubMedCrossRefGoogle Scholar
  82. Henderson IW, McKeever A, Kenyon CJ (1979) Captopril (SQ 14225) depresses drinking and aldosterone in rats lacking vasopressin. Nature 281:569–570PubMedCrossRefGoogle Scholar
  83. Henn V, Edemir B, Stefan E et al (2004) Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressin-induced aquaporin-2 shuttle in renal principal cells. J Biol Chem 279:26654–26665PubMedCrossRefGoogle Scholar
  84. Hober C, Vantyghem MC, Racadot A et al (1992) Normal hemodynamic and coagulation responses to 1-deamino-8-D-arginine vasopressin in a case of lithium-induced nephrogenic diabetes in-sipidus. Results of treatment by a prostaglandin synthesis inhibitor (indomethacin). Horm Res 37:190–195PubMedGoogle Scholar
  85. Hoffert JD, Nielsen J, Yu MJ et al (2007) Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am J Physiol Renal Physiol 292:F691–F700PubMedCrossRefGoogle Scholar
  86. Hoffert JD, Pisitkun T, Wang G et al (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci USA 103:7159–7164PubMedCrossRefGoogle Scholar
  87. Hozawa S, Holtzman EJ, Ausiello DA (1996) cAMP motifs regulating transcription in the aqua-porin 2 gene. Am J Physiol 270:C1695–C1702PubMedGoogle Scholar
  88. Ikeda M, Beitz E, Kozono D et al (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879Google Scholar
  89. Inoue T, Nielsen S, Mandon B et al (1998) SNAP-23 in rat kidney: colocalization with aquaporin-2 in collecting duct vesicles. Am J Physiol 275:F752–F760PubMedGoogle Scholar
  90. Ishibashi K, Imai M, Sasaki S (2000) Cellular localization of aquaporin 7 in the rat kidney. Exp Nephrol 8:252–257PubMedCrossRefGoogle Scholar
  91. Ishibashi K, Kuwahara M, Gu Y et al (1997a) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786CrossRefGoogle Scholar
  92. Ishibashi K, Sasaki S, Fushimi K et al (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci USA 91:6269–6273PubMedCrossRefGoogle Scholar
  93. Ishibashi K, Sasaki S, Fushimi K et al (1997b) Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts. Am J Physiol 272:F235–F241Google Scholar
  94. Jensen AM, Li C, Praetorius HA et al (2006) Angiotensin II mediates downregulation of aquaporin water channels and key renal sodium transporters in response to urinary tract obstruction. Am J Physiol Renal Physiol 291:F1021–F1032PubMedCrossRefGoogle Scholar
  95. Jonassen TE, Nielsen S, Christensen S et al (1998) Decreased vasopressin-mediated renal water reabsorption in rats with compensated liver cirrhosis. Am J Physiol 275:F216–F225PubMedGoogle Scholar
  96. Jonassen TE, Promeneur D, Christensen S et al (2000) Decreased vasopressin-mediated renal water reabsorption in rats with chronic aldosterone-receptor blockade. Am J Physiol Renal Physiol 278:F246–F256PubMedGoogle Scholar
  97. Kachadorian WA, Ellis SJ, Muller J (1979) Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder. Am J Physiol 236:F14–F20PubMedGoogle Scholar
  98. Kachadorian WA, Levine SD, Wade JB et al (1977) Relationship of aggregated intramembra-nous particles to water permeability in vasopressin-treated toad urinary bladder. J Clin Invest 59:576–581PubMedCrossRefGoogle Scholar
  99. Kachadorian WA, Wade JB, DiScala VA (1975) Vasopressin: induced structural change in toad bladder luminal membrane. Science 190:67–69PubMedCrossRefGoogle Scholar
  100. Kamsteeg EJ, Bichet DG, Konings IB et al (2003) Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J Cell Biol 163:1099–1109PubMedCrossRefGoogle Scholar
  101. Kamsteeg EJ, Heijnen I, van Os CH et al (2000) The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 151:919–930PubMedCrossRefGoogle Scholar
  102. Kamsteeg EJ, Hendriks G, Boone M et al (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci USA 103:18344–18349PubMedCrossRefGoogle Scholar
  103. Kanno K, Sasaki S, Hirata Y et al (1995) Urinary excretion of aquaporin-2 in patients with diabetes insipidus. N Engl J Med 332:1540–1545PubMedCrossRefGoogle Scholar
  104. Katsura T, Ausiello DA, Brown D (1996) Direct demonstration of aquaporin-2 water channel recycling in stably transfected LLC-PK1 epithelial cells. Am J Physiol 270:F548–F553PubMedGoogle Scholar
  105. Katsura T, Gustafson CE, Ausiello DA et al (1997) Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Physiol 272:F817–F822PubMedGoogle Scholar
  106. Kim GH, Ecelbarger CA, Mitchell C et al (1999) Vasopressin increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle' loop. Am J Physiol 276:F96–F103PubMedGoogle Scholar
  107. Kim GH, Lee JW, Oh YK et al (2004a) Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol 15:2836–2843CrossRefGoogle Scholar
  108. Kim SW, Schou UK, Peters CD et al (2005) Increased apical targeting of renal epithelial sodium channel subunits and decreased expression of type 2 11beta-hydroxysteroid dehydrogenase in rats with CCl4-induced decompensated liver cirrhosis. J Am Soc Nephrol 16:3196–3210PubMedCrossRefGoogle Scholar
  109. Kim SW, Wang W, Nielsen J et al (2004b) Increased expression and apical targeting of renal ENaC subunits in puromycin aminonucleoside-induced nephrotic syndrome in rats. Am J Physiol Renal Physiol 286:F922–F935CrossRefGoogle Scholar
  110. Kim YH, Kwon TH, Christensen BM et al (2003) Altered expression of renal acid-base transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol 285:F1244–F1257PubMedGoogle Scholar
  111. Kishore BK, Wade JB, Schorr K et al (1998) Expression of synaptotagmin VIII in rat kidney. Am J Physiol 275:F131–F142PubMedGoogle Scholar
  112. Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93:8455–8459PubMedCrossRefGoogle Scholar
  113. Klussmann E, Maric K, Wiesner B et al (1999) Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 274:4934–4938PubMedCrossRefGoogle Scholar
  114. Knepper M, Burg M (1983) Organization of nephron function. Am J Physiol 244:F579–F589PubMedGoogle Scholar
  115. Knepper MA, Nielsen S, Chou CL et al (1994) Mechanism of vasopressin action in the renal collecting duct. Semin Nephrol 14:302–321PubMedGoogle Scholar
  116. Kotnik P, Nielsen J, Kwon TH et al (2005) Altered expression of COX-1, COX-2, and mPGES in rats with nephrogenic and central diabetes insipidus. Am J Physiol Renal Physiol 288:F1053–F1068PubMedCrossRefGoogle Scholar
  117. Kuriyama H, Kawamoto S, Ishida N et al (1997) Molecular cloning and expression of a novel human aquaporin from adipose tissue with glycerol permeability. Biochem Biophys Res Commun 241:53–58PubMedCrossRefGoogle Scholar
  118. Kuwahara M, Fushimi K, Terada Y et al (1995) cAMP-dependent phosphorylation stimulates water permeability of aquaporin-collecting duct water channel protein expressed in Xenopus oocytes. J Biol Chem 270:10384–10387PubMedCrossRefGoogle Scholar
  119. Kuwahara M, Iwai K, Ooeda T et al (2001) Three families with autosomal dominant nephro-genic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet 69:738–748PubMedCrossRefGoogle Scholar
  120. Kuwahara M, Verkman AS (1989) Pre-steady-state analysis of the turn-on and turn-off of water permeability in the kidney collecting tubule. J Membr Biol 110:57–65PubMedCrossRefGoogle Scholar
  121. Kwon TH, Frokiaer J, Fernandez-Llama P et al (1999a) Reduced abundance of aquaporins in rats with bilateral ischemia-induced acute renal failure: prevention by alpha-MSH. Am J Physiol 277:F413–F427Google Scholar
  122. Kwon TH, Frokiaer J, Fernandez-Llama P et al (1999b) Altered expression of Na transporters NHE-3, NaPi-II, Na-K-ATPase, BSC-1, and TSC in CRF rat kidneys. Am J Physiol F257–F270Google Scholar
  123. Kwon TH, Frokiaer J, Knepper MA et al (1998) Reduced AQP1, −2, and −3 levels in kidneys of rats with CRF induced by surgical reduction in renal mass. Am J Physiol 275:F724–F741PubMedGoogle Scholar
  124. Kwon TH, Hager H, Nejsum LN et al (2001) Physiology and pathophysiology of renal aquaporins. Semin Nephrol 21:231–238PubMedCrossRefGoogle Scholar
  125. Kwon TH, Laursen UH, Marples D et al (2000) Altered expression of renal AQPs and Na(+) transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol 279:F552–F564PubMedGoogle Scholar
  126. Kwon TH, Nielsen J, Knepper MA et al (2005) Angiotensin II AT1 receptor blockade decreases vasopressin-induced water reabsorption and AQP2 levels in NaCl-restricted rats. Am J Physiol Renal Physiol 288:F673–F684PubMedCrossRefGoogle Scholar
  127. Kwon TH, Nielsen J, Masilamani S et al (2002) Regulation of collecting duct AQP3 expression: response to mineralocorticoid. Am J Physiol Renal Physiol 283:F1403–F1421PubMedGoogle Scholar
  128. Lai KN, Li FK, Lan HY et al (2001) Expression of aquaporin-1 in human peritoneal mesothelial cells and its upregulation by glucose in vitro. J Am Soc Nephrol 12:1036–1045PubMedGoogle Scholar
  129. Lande MB, Jo I, Zeidel ML et al (1996) Phosphorylation of aquaporin-2 does not alter the membrane water permeability of rat papillary water channel-containing vesicles. J Biol Chem 271:5552–5557PubMedCrossRefGoogle Scholar
  130. Lankford SP, Chou CL, Terada Y et al (1991) Regulation of collecting duct water permeability independent of cAMP-mediated AVP response. Am J Physiol 261:F554–F566PubMedGoogle Scholar
  131. Laursen UH, Pihakaski-Maunsbach K, Kwon TH et al (2004) Changes of rat kidney AQP2 and Na,K-ATPase mRNA expression in lithium-induced nephrogenic diabetes insipidus. Nephron Exp Nephrol 97:e1–e16PubMedCrossRefGoogle Scholar
  132. Lee YJ, Song IK, Jang KJ et al (2007) Increased AQP2 targeting in primary cultured IMCD cells in response to angiotensin II through AT1 receptor. Am J Physiol Renal Physiol 292:F340–F350PubMedCrossRefGoogle Scholar
  133. Levy M, Wexler MJ (1987) Hepatic denervation alters first-phase urinary sodium excretion in dogs with cirrhosis. Am J Physiol 253:F664–F671PubMedGoogle Scholar
  134. Li C, Wang W, Kwon TH et al (2001) Downregulation of AQP1, –−2, and −3 after ureteral obstruction is associated with a long-term urine-concentrating defect. Am J Physiol Renal Physiol 281:F163–F171PubMedGoogle Scholar
  135. Li C, Wang W, Kwon TH et al (2003) Altered expression of major renal Na transporters in rats with bilateral ureteral obstruction and release of obstruction. Am J Physiol Renal Physiol 285:F889–F901PubMedGoogle Scholar
  136. Li Y, Shaw S, Kamsteeg EJ et al (2006) Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J Am Soc Nephrol 17:1063–1072PubMedCrossRefGoogle Scholar
  137. Liebenhoff U, Rosenthal W (1995) Identification of Rab3-, Rab5a- and synaptobrevin II-like proteins in a preparation of rat kidney vesicles containing the vasopressin-regulated water channel. FEBS Lett 365:209–213PubMedCrossRefGoogle Scholar
  138. Liu K, Kozono D, Kato Y et al (2005) Conversion of aquaporin 6 from an anion channel to a water-selective channel by a single amino acid substitution. Proc Natl Acad Sci USA 102:2192–2197PubMedCrossRefGoogle Scholar
  139. Loonen AJ, Knoers NV, van Os CH et al (2008) Aquaporin 2 mutations in nephrogenic diabetes insipidus. Semin Nephrol 28:252–265PubMedCrossRefGoogle Scholar
  140. Lorenz D, Krylov A, Hahm D et al (2003) Cyclic AMP is sufficient for triggering the exocytic recruitment of aquaporin-2 in renal epithelial cells. EMBO Rep 4:88–93PubMedCrossRefGoogle Scholar
  141. Lu H, Sun TX, Bouley R et al (2004) Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am J Physiol Renal Physiol 286:F233–F243PubMedCrossRefGoogle Scholar
  142. Lu HA, Sun TX, Matsuzaki T et al (2007) Heat shock protein 70 interacts with aquaporin-2 and regulates its trafficking. J Biol Chem 282:28721–28732PubMedCrossRefGoogle Scholar
  143. Ma T, Frigeri A, Hasegawa H et al (1994) Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J Biol Chem 269:21845–21849PubMedGoogle Scholar
  144. Ma T, Song Y, Yang B et al (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci USA 97:4386–4391PubMedCrossRefGoogle Scholar
  145. Ma T, Yang B, Gillespie A et al (1997) Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest 100:957–962PubMedCrossRefGoogle Scholar
  146. Ma T, Yang B, Gillespie A et al (1998) Severely impaired urinary concentrating ability in trans-genic mice lacking aquaporin-1 water channels. J Biol Chem 273:4296–4299PubMedCrossRefGoogle Scholar
  147. Mandon B, Chou CL, Nielsen S et al (1996) Syntaxin-4 is localized to the apical plasma membrane of rat renal collecting duct cells: possible role in aquaporin-2 trafficking. J Clin Invest 98:906–913PubMedCrossRefGoogle Scholar
  148. Mandon B, Nielsen S, Kishore BK et al (1997) Expression of syntaxins in rat kidney. Am J Physiol 273:F718–F730PubMedGoogle Scholar
  149. Marples D, Barber B, Taylor A (1996a) Effect of a dynein inhibitor on vasopressin action in toad urinary bladder. J Physiol 490 (Part 3):767–774Google Scholar
  150. Marples D, Christensen S, Christensen EI et al (1995a) Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest 95:1838–1845CrossRefGoogle Scholar
  151. Marples D, Frokiaer J, Dorup J et al (1996b) Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest 97:1960–1968CrossRefGoogle Scholar
  152. Marples D, Knepper MA, Christensen EI et al (1995b) Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am J Physiol 269:C655–C664Google Scholar
  153. Marples D, Schroer TA, Ahrens N et al (1998) Dynein and dynactin colocalize with AQP2 water channels in intracellular vesicles from kidney collecting duct. Am J Physiol 274:F384–F394PubMedGoogle Scholar
  154. Marr N, Bichet DG, Lonergan M et al (2002) Heteroligomerization of an aquaporin-2 mutant with wild-type aquaporin-2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus. Hum Mol Genet 11:779–PubMedCrossRefGoogle Scholar
  155. Martin PY, Abraham WT, Lieming X et al (1999) Selective V2-receptor vasopressin antagonism decreases urinary aquaporin-2 excretion in patients with chronic heart failure. J Am Soc Nephrol 10:2165–2170PubMedGoogle Scholar
  156. Matsumura Y, Uchida S, Rai T et al (1997) Transcriptional regulation of aquaporin-2 water channel gene by cAMP. J Am Soc Nephrol 8:861–867PubMedGoogle Scholar
  157. McDill BW, Li SZ, Kovach PA et al (2006) Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci USA 103:6952–6957PubMedCrossRefGoogle Scholar
  158. Morishita Y, Matsuzaki T, Hara-chikuma M et al (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–7779PubMedCrossRefGoogle Scholar
  159. Mouillac B, Chini B, Balestre MN et al (1995) The binding site of neuropeptide vasopressin V1a receptor. Evidence for a major localization within transmembrane regions. J Biol Chem 270:25771–25777Google Scholar
  160. Mulders SM, Bichet DG, Rijss JP et al (1998) An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest 102:57–66PubMedCrossRefGoogle Scholar
  161. Muller J, Kachadorian WA (1984) Aggregate-carrying membranes during ADH stimulation and washout in toad bladder. Am J Physiol 247:C90–C98PubMedGoogle Scholar
  162. Murer L, Addabbo F, Carmosino M et al (2004) Selective decrease in urinary aquaporin 2 and increase in prostaglandin E2 excretion is associated with postobstructive polyuria in human congenital hydronephrosis. J Am Soc Nephrol 15:2705–2712PubMedCrossRefGoogle Scholar
  163. Murillo-Carretero MI, Ilundain AA, Echevarria M (1999) Regulation of aquaporin mRNA expression in rat kidney by water intake. J Am Soc Nephrol 10:696–703Google Scholar
  164. Nejsum LN, Elkjaer M, Hager H et al (2000) Localization of aquaporin-7 in rat and mouse kidney using RT-PCR, immunoblotting, and immunocytochemistry. Biochem Biophys Res Commun 277:164–170PubMedCrossRefGoogle Scholar
  165. Nejsum LN, Zelenina M, Aperia A et al (2005) Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation. Am J Physiol Renal Physiol 288:F930–F938PubMedCrossRefGoogle Scholar
  166. Nielsen J, Hoffert JD, Knepper MA et al (2008a) Proteomic analysis of lithium-induced nephro-genic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation. Proc Natl Acad Sci USA 105:3634–3639CrossRefGoogle Scholar
  167. Nielsen J, Kwon TH, Christensen BM et al (2008b) Dysregulation of renal aquaporins and epithelial sodium channel in lithium-induced nephrogenic diabetes insipidus. Semin Nephrol 28:227–244CrossRefGoogle Scholar
  168. Nielsen J, Kwon TH, Praetorius J et al (2006) Aldosterone increases urine production and decreases apical AQP2 expression in rats with diabetes insipidus. Am J Physiol Renal Physiol 290:F438–F449PubMedCrossRefGoogle Scholar
  169. Nielsen J, Kwon TH, Praetorius J et al (2003) Segment-specific ENaC downregulation in kidney of rats with lithium-induced NDI. Am J Physiol Renal Physiol 285:F1198–F1209PubMedGoogle Scholar
  170. Nielsen S, Chou CL, Marples D et al (1995a) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci USA 92:1013–1017CrossRefGoogle Scholar
  171. Nielsen S, DiGiovanni SR, Christensen EI et al (1993a) Cellular and subcellular immunolo-calization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci USA 90:11663–11667CrossRefGoogle Scholar
  172. Nielsen S, Frokiaer J, Marples D et al (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244PubMedGoogle Scholar
  173. Nielsen S, Kwon TH, Christensen BM et al (1999) Physiology and pathophysiology of renal aqua-porins. J Am Soc Nephrol 10:647–663PubMedGoogle Scholar
  174. Nielsen S, Kwon TH, Frokiaer J et al (2007) Regulation and dysregulation of aquaporins in water balance disorders. J Intern Med 261:53–64PubMedCrossRefGoogle Scholar
  175. Nielsen S, Kwon TH, Dimke H et al (2008c) Aqauporin water channels in mammalian kidney. In Alpern RJ, Hebert SC (ed) The kidney, 4th edn. Elsevier, San DiegoGoogle Scholar
  176. Nielsen S, Kwon TH, Frokiaer J et al (2000) Key roles of renal aquaporins in water balance and water-balance disorders. News Physiol Sci 15:136–143PubMedGoogle Scholar
  177. Nielsen S, Marples D, Birn H et al (1995b) Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with aquaporin-2 water channels. J Clin Invest 96:1834–1844Google Scholar
  178. Nielsen S, Pallone T, Smith BL et al (1995c) Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am J Physiol 268:F1023–F1037Google Scholar
  179. Nielsen S, Smith BL, Christensen EI et al (1993b) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 90:7275–7279CrossRefGoogle Scholar
  180. Nielsen S, Smith BL, Christensen EI et al (1993c) CHIP28 water channels are localized in consti-tutively water-permeable segments of the nephron. J Cell Biol 120:371–383CrossRefGoogle Scholar
  181. Nielsen S, Terris J, Andersen D et al (1997) Congestive heart failure in rats is associated with increased expression and targeting of aquaporin-2 water channel in collecting duct. Proc Natl Acad Sci USA 94:5450–5455PubMedCrossRefGoogle Scholar
  182. Norregaard R, Jensen BL, Li C et al (2005) COX-2 inhibition prevents downregulation of key renal water and sodium transport proteins in response to bilateral ureteral obstruction. Am J Physiol Renal Physiol 289: F322–F333PubMedCrossRefGoogle Scholar
  183. Norregaard R, Jensen BL, Topcu SO et al (2006) Cyclooxygenase type 2 is increased in obstructed rat and human ureter and contributes to pelvic pressure increase after obstruction. Kidney Int 70:872–881PubMedCrossRefGoogle Scholar
  184. Novak A, Dedhar S (1999) Signaling through beta-catenin and Lef/Tcf. Cell Mol Life Sci 56:523–537PubMedCrossRefGoogle Scholar
  185. Pallone TL, Turner MR, Edwards A et al (2003) Countercurrent exchange in the renal medulla. Am J Physiol Regul Integr Comp Physiol 284:R1153–R1175PubMedGoogle Scholar
  186. Pearl M, Taylor A (1983) Actin filaments and vasopressin-stimulated water flow in toad urinary bladder. Am J Physiol 245:C28–C39PubMedGoogle Scholar
  187. Pevsner J, Hsu SC, Braun JE et al (1994) Specificity and regulation of a synaptic vesicle docking complex. Neuron 13:353–361PubMedCrossRefGoogle Scholar
  188. Phillips ME, Taylor A (1989) Effect of nocodazole on the water permeability response to vaso-pressin in rabbit collecting tubules perfused in vitro. J Physiol 411:529–544PubMedGoogle Scholar
  189. Phillips ME, Taylor A (1992) Effect of colcemid on the water permeability response to vasopressin in isolated perfused rabbit collecting tubules. J Physiol 456:591–608PubMedGoogle Scholar
  190. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101:13368–13373PubMedCrossRefGoogle Scholar
  191. Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88:11110–11114PubMedCrossRefGoogle Scholar
  192. Preston GM, Carroll TP, Guggino WB et al (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387PubMedCrossRefGoogle Scholar
  193. Procino G, Carmosino M, Marin O et al (2003) Ser-256 phosphorylation dynamics of aqua-porin 2 during maturation from the ER to the vesicular compartment in renal cells. FASEB J 17:1886–1888PubMedGoogle Scholar
  194. Procino G, Carmosino M, Tamma G et al (2004) Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int 66:2245–2255PubMedCrossRefGoogle Scholar
  195. Promeneur D, Kwon TH, Frokiaer J et al (2000) Vasopressin V(2)-receptor-dependent regulation of AQP2 expression in Brattleboro rats. Am J Physiol Renal Physiol 279:F370–F382PubMedGoogle Scholar
  196. Puliyanda DP, Ward DT, Baum MA et al (2003) Calpain-mediated AQP2 proteolysis in inner medullary collecting duct. Biochem Biophys Res Commun 303:52–58PubMedCrossRefGoogle Scholar
  197. Radomski JL, Fuyathn, Nelson AA et al (1950) The toxic effects, excretion and distribution of lithium chloride. J Pharmacol Exp Ther 100:429–444PubMedGoogle Scholar
  198. Rao R, Zhang MZ, Zhao M et al (2005) Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol 288:F642–F649PubMedCrossRefGoogle Scholar
  199. Riccardi D, Hall AE, Chattopadhyay N et al (1998) Localization of the extracellular Ca2+/ polyvalent cation-sensing protein in rat kidney. Am J Physiol 274:F611–F622PubMedGoogle Scholar
  200. Riccardi D, Lee WS, Lee K et al (1996) Localization of the extracellular Ca(2+)-sensing receptor and PTH/PTHrP receptor in rat kidney. Am J Physiol 271:F951–F956PubMedGoogle Scholar
  201. Risinger C, Bennett MK (1999) Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms. J Neurochem 72:614–624PubMedCrossRefGoogle Scholar
  202. Rojek A, Fuchtbauer EM, Kwon TH et al (2006) Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proc Natl Acad Sci USA 103:6037–6042PubMedCrossRefGoogle Scholar
  203. Rojek A, Praetorius J, Frokiaer J et al (2008) A current view of the mammalian aquaglyceroporins. Annu Rev Physiol 70:301–327PubMedCrossRefGoogle Scholar
  204. Russo LM, McKee M, Brown D (2006) Methyl-beta-cyclodextrin induces vasopressin-independent apical accumulation of aquaporin-2 in the isolated, perfused rat kidney. Am J Physiol Renal Physiol 291:F246–F253PubMedCrossRefGoogle Scholar
  205. Sabolic I, Katsura T, Verbavatz JM et al (1995) The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol 143:165–175PubMedCrossRefGoogle Scholar
  206. Sabolic I, Valenti G, Verbavatz JM et al (1992) Localization of the CHIP28 water channel in rat kidney. Am J Physiol 263:C1225–C1233PubMedGoogle Scholar
  207. Saito T, Ishikawa SE, Sasaki S et al (1997) Alteration in water channel AQP-2 by removal of AVP stimulation in collecting duct cells of dehydrated rats. Am J Physiology 272:F183–F191Google Scholar
  208. Sasaki S, Fushimi K, Saito H et al (1994) Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct. J Clin Invest 93:1250–1256PubMedCrossRefGoogle Scholar
  209. Schnermann J, Chou CL, Ma T et al (1998) Defective proximal tubular fluid reabsorption in trans-genic aquaporin-1 null mice. Proc Natl Acad Sci USA 95:9660–9664PubMedCrossRefGoogle Scholar
  210. Schrier RW (2008) Vasopressin and aquaporin 2 in clinical disorders of water homeostasis. Semin Nephrol 28:289–296PubMedCrossRefGoogle Scholar
  211. Seibold A, Brabet P, Rosenthal W et al (1992) Structure and chromosomal localization of the human antidiuretic hormone receptor gene. Am J Hum Genet 51:1078–1083PubMedGoogle Scholar
  212. Sharples EJ, Patel N, Brown P et al (2004) Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol 15:2115–2124PubMedCrossRefGoogle Scholar
  213. Shaw S, Marples D (2005) N-ethylmaleimide causes aquaporin-2 trafficking in the renal inner medullary collecting duct by direct activation of protein kinase A. Am J Physiol Renal Physiol 288:F832–F839PubMedCrossRefGoogle Scholar
  214. Shi Y, Li C, Thomsen K et al (2004a) Neonatal ureteral obstruction alters expression of renal sodium transporters and aquaporin water channels. Kidney Int 66:203–215CrossRefGoogle Scholar
  215. Shi Y, Pedersen M, Li C et al (2004b) Early release of neonatal ureteral obstruction preserves renal function. Am J Physiol Renal Physiol 286:F1087–F1099CrossRefGoogle Scholar
  216. Shimazaki Y, Nishiki T, Omori A et al (1996) Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem 271:14548–14553Google Scholar
  217. Smith BL, Agre P (1991) Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J Biol Chem 266:6407–6415PubMedGoogle Scholar
  218. Sohara E, Rai T, Miyazaki J et al (2005) Defective water and glycerol transport in the proximal tubules of AQP7 knockout mice. Am J Physiol Renal Physiol 289:F1195–F1200PubMedCrossRefGoogle Scholar
  219. Sollner T, Whiteheart SW, Brunner M et al (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324PubMedCrossRefGoogle Scholar
  220. Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6:1664–1668PubMedCrossRefGoogle Scholar
  221. Stamer WD, Snyder RW, Smith BL et al (1994) Localization of aquaporin CHIP in the human eye: implications in the pathogenesis of glaucoma and other disorders of ocular fluid balance. Invest Ophthalmol Vis Sci 35:3867–3872PubMedGoogle Scholar
  222. Stamoutsos BA, Carpenter RG, Grossman SP (1981) Role of angiotensin-II in the polydipsia of diabetes insipidus in the Brattleboro rat. Physiol Behav 26:691–693PubMedCrossRefGoogle Scholar
  223. Star RA, Nonoguchi H, Balaban R et al (1988) Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Invest 81:1879–1888PubMedCrossRefGoogle Scholar
  224. Stefan E, Wiesner B, Baillie GS et al (2007) Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorp-tion in renal principal cells. J Am Soc Nephrol 18:199–212PubMedCrossRefGoogle Scholar
  225. Sudhof TC, De CP, Niemann H et al (1993) Membrane fusion machinery: insights from synaptic proteins. Cell 75:1–4PubMedGoogle Scholar
  226. Sugawara M, Hashimoto K, Ota Z (1988) Involvement of prostaglandinE2, cAMP, and vasopressin in lithium-induced polyuria. Am J Physiol 254:R863–R869PubMedGoogle Scholar
  227. Tajika Y, Matsuzaki T, Suzuki T et al (2004) Aquaporin-2 is retrieved to the apical storage compartment via early endosomes and phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 145:4375–4383PubMedCrossRefGoogle Scholar
  228. Tajika Y, Matsuzaki T, Suzuki T et al (2005) Differential regulation of AQP2 trafficking in endo-somes by microtubules and actin filaments. Histochem Cell Biol 124:1–12PubMedCrossRefGoogle Scholar
  229. Tamma G, Wiesner B, Furkert J et al (2003) The prostaglandin E2 analogue sulprostone antagonizes vasopressin-induced antidiuresis through activation of Rho. J Cell Sci 116:3285–3294PubMedCrossRefGoogle Scholar
  230. Tannen RL, Regal EM, Dunn MJ et al (1969) Vasopressin-resistant hyposthenuria in advanced chronic renal disease. N Engl J Med 280:1135–1141PubMedCrossRefGoogle Scholar
  231. Tanner GA, Sloan KL, Sophasan S (1973) Effects of renal artery occlusion on kidney function in the rat. Kidney Int 4:377–389PubMedCrossRefGoogle Scholar
  232. Teitelbaum I, McGuinness S (1995) Vasopressin resistance in chronic renal failure. Evidence for the role of decreased V2 receptor mRNA. J Clin Invest 96:378–385Google Scholar
  233. Terris J, Ecelbarger CA, Marples D et al (1995) Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol 269:F775–F785PubMedGoogle Scholar
  234. Terris J, Ecelbarger CA, Nielsen S et al (1996) Long-term regulation of four renal aquaporins in rats. Am J Physiol 271:F414–F422PubMedGoogle Scholar
  235. Timmer RT, Sands JM (1999) Lithium intoxication. J Am Soc Nephrol 10:666–674PubMedGoogle Scholar
  236. Topcu SO, Pedersen M, Norregaard R et al (2007) Candesartan prevents long-term impairment of renal function in response to neonatal partial unilateral ureteral obstruction. Am J Physiol Renal Physiol 292:F736–F748PubMedCrossRefGoogle Scholar
  237. Umenishi F, Narikiyo T, Vandewalle A et al (2006) cAMP regulates vasopressin-induced AQP2 expression via protein kinase A-independent pathway. Biochim Biophys Acta 1758:1100–1105PubMedCrossRefGoogle Scholar
  238. Valenti G, Laera A, Gouraud S et al (2002) Low-calcium diet in hypercalciuric enuretic children restores AQP2 excretion and improves clinical symptoms. Am J Physiol Renal Physiol 283:F895–F903PubMedGoogle Scholar
  239. Valenti G, Laera A, Pace G et al (2000) Urinary aquaporin 2 and calciuria correlate with the severity of enuresis in children. J Am Soc Nephrol 11:1873–1881PubMedGoogle Scholar
  240. Valtin H, Schroeder HA (1964) Familial hypothalamic diabetes insipidus in rats (Brattleboro strain). Am J Physiol 206:425–430PubMedGoogle Scholar
  241. van Balkom BW, Savelkoul PJ, Markovich D et al (2002) The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J Biol Chem 277:41473–41479PubMedCrossRefGoogle Scholar
  242. Van Hoek AN, Ma T, Yang B et al (2000) Aquaporin-4 is expressed in basolateral membranes of proximal tubule S3 segments in mouse kidney. Am J Physiol Renal Physiol 278:F310–F316PubMedGoogle Scholar
  243. Venkatachalam MA, Bernard DB, Donohoe JF et al (1978) Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments. Kidney Int 14:31–49PubMedCrossRefGoogle Scholar
  244. Verkman AS (2008) Dissecting the roles of aquaporins in renal pathophysiology using transgenic mice. Semin Nephrol 28:217–226PubMedCrossRefGoogle Scholar
  245. Wade JB, Kachadorian WA (1988) Cytochalasin B inhibition of toad bladder apical membrane responses to ADH. Am J Physiol 255:C526–C530PubMedGoogle Scholar
  246. Wade JB, Stetson DL, Lewis SA (1981) ADH action: evidence for a membrane shuttle mechanism. Ann N Y Acad Sci 372:106–117PubMedCrossRefGoogle Scholar
  247. Wall SM, Han JS, Chou CL et al (1992) Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am J Physiol 262:F989–F998PubMedGoogle Scholar
  248. Wang W, Kwon TH, Li C et al (2002a) Reduced expression of Na-K-2Cl cotransporter in medullary TAL in vitamin D-induced hypercalcemia in rats. Am J Physiol Renal Physiol 282:F34–F44Google Scholar
  249. Wang W, Li C, Kwon TH et al (2002b) AQP3, p-AQP2, and AQP2 expression is reduced in polyuric rats with hypercalcemia: prevention by cAMP-PDE inhibitors. Am J Physiol Renal Physiol 283:F1313–F1325Google Scholar
  250. Wen H, Frokiaer J, Kwon TH et al (1999) Urinary excretion of aquaporin-2 in rat is mediated by a vasopressin-dependent apical pathway. J Am Soc Nephrol 10:1416–1429PubMedGoogle Scholar
  251. Wood LJ, Massie D, McLean AJ et al (1988) Renal sodium retention in cirrhosis: tubular site and relation to hepatic dysfunction. Hepatology 8:831–836PubMedCrossRefGoogle Scholar
  252. Xu DL, Martin PY, Ohara M et al (1997) Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. J Clin Invest 99:1500–1505PubMedCrossRefGoogle Scholar
  253. Yamamoto T, Sasaki S, Fushimi K et al (1995) Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. Am J Physiol 268:C1546–51PubMedGoogle Scholar
  254. Yasui M, Hazama A, Kwon TH et al (1999a) Rapid gating and anion permeability of an intracel-lular aquaporin. Nature 402:184–187CrossRefGoogle Scholar
  255. Yasui M, Kwon TH, Knepper MA et al (1999b) Aquaporin-6: An intracellular vesicle water channel protein in renal epithelia. Proc Natl Acad Sci USA 96:5808–5813CrossRefGoogle Scholar
  256. Yip KP (2002) Coupling of vasopressin-induced intracellular Ca2+ mobilization and apical exo-cytosis in perfused rat kidney collecting duct. J Physiol 538:891–899PubMedCrossRefGoogle Scholar
  257. Zelenina M, Christensen BM, Palmer J et al (2000) Prostaglandin E(2) interaction with AVP: effects on AQP2 phosphorylation and distribution. Am J Physiol Renal Physiol 278:F388–F394PubMedGoogle Scholar
  258. Zelenina M, Zelenin S, Bondar AA et al (2002) Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine. Am J Physiol Renal Physiol 283:F309–F318PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tae-Hwan Kwon
    • 1
  • Jakob Nielsen
    • 1
    • 2
  • Hanne B. Møller
    • 1
    • 2
  • Robert A. Fenton
    • 1
    • 2
  • Søren Nielsen
    • 1
    • 2
  • Jørgen Frøkiær
    • 1
  1. 1.Water and Salt Research CenterInstitute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National UniversityTaeguKorea
  2. 2.Department of Biochemistry and Cell BiologySchool of Medicine, Kyungpook National UniversityTaeguKorea

Personalised recommendations