Automatic Image Annotation Using a Visual Dictionary Based on Reliable Image Segmentation

  • Christian Hentschel
  • Sebastian Stober
  • Andreas Nürnberger
  • Marcin Detyniecki
Conference paper

DOI: 10.1007/978-3-540-79860-6_4

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4918)
Cite this paper as:
Hentschel C., Stober S., Nürnberger A., Detyniecki M. (2008) Automatic Image Annotation Using a Visual Dictionary Based on Reliable Image Segmentation. In: Boujemaa N., Detyniecki M., Nürnberger A. (eds) Adaptive Multimedia Retrieval: Retrieval, User, and Semantics. AMR 2007. Lecture Notes in Computer Science, vol 4918. Springer, Berlin, Heidelberg

Abstract

Recent approaches in Automatic Image Annotation (AIA) try to combine the expressiveness of natural language queries with approaches to minimize the manual effort for image annotation. The main idea is to infer the annotations of unseen images using a small set of manually annotated training examples. However, typically these approaches suffer from low correlation between the globally assigned annotations and the local features used to obtain annotations automatically. In this paper we propose a framework to support image annotations based on a visual dictionary that is created automatically using a set of locally annotated training images. We designed a segmentation and annotation interface to allow for easy annotation of the traing data. In order to provide a framework that is easily extendable and reusable we make broad use of the MPEG-7 standard.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christian Hentschel
    • 1
  • Sebastian Stober
    • 1
  • Andreas Nürnberger
    • 1
  • Marcin Detyniecki
    • 2
  1. 1.Otto-von-Guericke-UniversityMagdeburgGermany
  2. 2.Laboratoire d’Informatique de Paris 6France

Personalised recommendations