Automatic Image Annotation Using a Visual Dictionary Based on Reliable Image Segmentation

  • Christian Hentschel
  • Sebastian Stober
  • Andreas Nürnberger
  • Marcin Detyniecki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4918)

Abstract

Recent approaches in Automatic Image Annotation (AIA) try to combine the expressiveness of natural language queries with approaches to minimize the manual effort for image annotation. The main idea is to infer the annotations of unseen images using a small set of manually annotated training examples. However, typically these approaches suffer from low correlation between the globally assigned annotations and the local features used to obtain annotations automatically. In this paper we propose a framework to support image annotations based on a visual dictionary that is created automatically using a set of locally annotated training images. We designed a segmentation and annotation interface to allow for easy annotation of the traing data. In order to provide a framework that is easily extendable and reusable we make broad use of the MPEG-7 standard.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bimbo, A.D.: Visual Information Retrieval. Morgan Kaufmann Publishers, Inc., San Francisco, CA (1999)Google Scholar
  2. 2.
    Choi, Y., Won, C.S., Ro, Y.M., Manjunath, B.S.: Texture Descriptors, Introduction to MPEG-7: Multimedia Content Description Interface, pp. 213–229. John Wiley & Sons, Ltd., Chichester (2002)Google Scholar
  3. 3.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Cusano, C., Ciocca, G., Schettini, R.: Image annotation using svm. In: Santini, S., Schettini, R. (eds.) Internet Imaging V, Proceedings of the SPIE, the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, December 2003, vol. 5304, pp. 330–338 (2003)Google Scholar
  5. 5.
    Feng, S., Manmatha, R., Lavrenko, V.: Multiple bernoulli relevance models for image and video annotation. In: Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference, 27 June–2 July 2004, vol. 2, pp. II–1002–II–1009 (2004) Google Scholar
  6. 6.
    Feng, X., Fang, J., Qiu, G.: Color photo categorization using compressed histograms and support vector machines. In: Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference, 14-17 September, vol. 3, pp. III–753–6 (2003)Google Scholar
  7. 7.
    Frigui, H., Caudill, J.: Unsupervised image segmentation and annotation for content-based image retrieval. In: Fuzzy Systems, 2006 IEEE International Conference, July 16-21, pp. 72–77 (2006)Google Scholar
  8. 8.
    Goh, K.-S., Chang, E., Cheng, K.-T.: Support vector machine pairwise classifiers with error reduction for image classification. In: MULTIMEDIA 2001: Proceedings of the 2001 ACM workshops on Multimedia, pp. 32–37. ACM Press, New York, NY, USA (2001)Google Scholar
  9. 9.
    Hentschel, C., Nürnberger, A., Schmitt, I., Stober, S.: Safire: Towards standardized semantic rich image annotation. In: Marchand-Maillet, S., Bruno, E., Nürnberger, A., Detyniecki, M. (eds.) AMR 2006. LNCS, vol. 4398. Springer, Heidelberg (2007)Google Scholar
  10. 10.
    Inoue, M.: On the need for annotation-based image retrieval. In: Workshop on Information Retrieval in Context (IRiX), pp. 44–46 (2004)Google Scholar
  11. 11.
    Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference, 17-21 October, vol. 1, pp. 604–610 (2005)Google Scholar
  12. 12.
    Laaksonen, J., Koskela, M., Oja, E.: PicSOM: Self-organizing maps for content-based image retrieval. In: Proc. of International Joint Conference on Neural Networks (IJCNN 1999), Washington, D.C., USA, July 10–16 (1999)Google Scholar
  13. 13.
    Lavrenko, V., Feng, S., Manmatha, R.: Statistical models for automatic video annotation and retrieval. In: Acoustics, Speech, and Signal Processing, 2004. Proceedings (ICASSP 2004). IEEE International Conference, 17-21 May, vol. 3, pp. iii–1044–7 (2004)Google Scholar
  14. 14.
    Lavrenko, V., Manmatha, R., Jeon, J.: A model for learning the semantics of pictures. In: Proceedings of the 16th Conference on Advances in Neural Information Processing Systems NIPS (2003)Google Scholar
  15. 15.
    Lefebvre, G., Laurent, C., Ros, J., Garcia, C.: Supervised image classification by som activity map comparison. icpr 2, 728–731 (2006)Google Scholar
  16. 16.
    Lipson, P., Grimson, E., Sinha, P.: Configuration based scene classification and image indexing. In: Computer Vision and Pattern Recognition, 1997. Proceedings, 1997 IEEE Computer Society Conference, 17-19 June, pp. 1007–1013 (1997)Google Scholar
  17. 17.
    Minka, T.: An image database browser that learns from user interaction. Master’s thesis, MIT Media Laboratory, Cambridge, MA (1996)Google Scholar
  18. 18.
    Mori, Y., Takahashi, H., Oka, R.: Image-to-word transformation based on dividing and vector quantizing images with words (1999)Google Scholar
  19. 19.
    Ohm, J.-R., Cieplinski, L., Kim, H.J., Krishnamachari, S., Manjunath, B.S., Messing, D.S., Yamada, A.: Color Descriptors, Introduction to MPEG-7: Multimedia Content Description Interface, pp. 187–212. John Wiley & Sons, Ltd., Chichester (2002)Google Scholar
  20. 20.
    Ojala, T., Mäenpää, T., Viertola, J., Kyllönen, J., Pietikäinen, M.: Empirical evaluation of mpeg-7 texture descriptors with a large-scale experiment. In: Proc. 2nd International Workshop on Texture Analysis and Synthesis, pp. 99–102 (2002)Google Scholar
  21. 21.
    Picard, R.W., Minka, T.P.: Vision texture for annotation. Multimedia Systems 3(1), 3–14 (1995)CrossRefGoogle Scholar
  22. 22.
    Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: A database and web-based tool for image annotation. MIT AI Lab Memo AIM-2005-025 (2005)Google Scholar
  23. 23.
    Schmitt, I.: Ähnlichkeitssuche in Multimedia-Datenbanken. Retrieval, Suchalgorithmen und Anfragebehandlung. Oldenbourg (2005)Google Scholar
  24. 24.
    Oh, K.s., Kaneko, K., Makinouchi, A.: Image classification and retrieval based on wavelet-som. dante 00, 164 (1999)Google Scholar
  25. 25.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Computer Vision, 2003. Proceedings. Ninth IEEE International Conference, 13-16 October, vol. 2, pp. 1470–1477 (2003)Google Scholar
  26. 26.
    Town, C., Sinclair, D.: Content based image retrieval using semantic visual categories (2000)Google Scholar
  27. 27.
    Vailaya, A., Figueiredo, M., Jain, A., Zhang, H.-J.: Image classification for content-based indexing. Image Processing, IEEE Transactions 10(1), 117–130 (2001)MATHCrossRefGoogle Scholar
  28. 28.
    Vailaya, A., Jain, A., Zhang, H.J.: On image classification: City vs. landscape. In: Content-Based Access of Image and Video Libraries, 1998. Proceedings. IEEE Workshop, 21 June, pp. 3–8 (1998)Google Scholar
  29. 29.
    Vogel, J.: Semantic Scene Modeling and Retrieval. In: Selected Readings in Vision and Graphics, vol. 33. Hartung-Gorre Verlag, Konstanz (2004)Google Scholar
  30. 30.
    Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal visual dictionary. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference, 17-21 October, vol. 2, pp. 1800–1807 (2005)Google Scholar
  31. 31.
    Zhang, R., Zhang, Z.: Hidden semantic concept discovery in region based image retrieval. In: Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference, 27 June–2 July, vol. 2, pp. II–996–II–1001 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christian Hentschel
    • 1
  • Sebastian Stober
    • 1
  • Andreas Nürnberger
    • 1
  • Marcin Detyniecki
    • 2
  1. 1.Otto-von-Guericke-UniversityMagdeburgGermany
  2. 2.Laboratoire d’Informatique de Paris 6France

Personalised recommendations