Comparison of Dimension Reduction Methods for Database-Adaptive 3D Model Retrieval

  • Ryutarou Ohbuchi
  • Jun Kobayashi
  • Akihiro Yamamoto
  • Toshiya Shimizu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4918)

Abstract

Distance measures, along with shape features, are the most critical components in a shape-based 3D model retrieval system. Given a shape feature, an optimal distance measure will vary per query, per user, or per database. No single, fixed distance measure would be satisfactory all the time. This paper focuses on a method to adapt distance measure to the database to be queried by using learning-based dimension reduction algorithms. We experimentally compare six such dimension reduction algorithms, both linear and non-linear, for their efficacy in the context of shape-based 3D model retrieval. We tested the efficacy of these methods by applying them to five global shape features. Among the dimension reduction methods we tested, non-linear manifold learning algorithms performed better than the other, e.g. linear algorithms such as principal component analysis. Performance of the best performing combination is roughly the same as the top finisher in the SHREC 2006 contest.

References

  1. 1.
    Atmosukarto, I., Leow, W.K., Huang, Z.: Feature Combination and Relevance Feedback for 3D Model Retrieval. In: Proc. MMM 2005, pp. 334–339 (2005)Google Scholar
  2. 2.
    Baeza-Yates, R., Ribiero-Neto, B.: Modern information retrieval. Addison-Wesley, Reading (1999)Google Scholar
  3. 3.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15, 1373–1396 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Bratley, P., Fox, B.L., Niederreiter, H.: Algorithm 738: Programs to Generate Niederreiter’s Low-discrepancy Sequences. ACM TOMS Algorithm 738Google Scholar
  5. 5.
    Bustos, B., Keim, D., Saupe, D., Schreck, T., Vranić, D.: Automatic Selection and Combination of Descriptors for Effective 3D Similarity Search. In: Proc. IEEE MCBAR 2004, pp. 514–521 (2004)Google Scholar
  6. 6.
    Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE Trans. on Neural Networks 2(2), 302–309 (1991)CrossRefGoogle Scholar
  7. 7.
    Chen, D.-Y., Tian, X.-P., Shen, Y.-T., Ouhyoung, M.: On Visual Similarity Based 3D Model Retrieval. Computer Graphics Forum 22(3), 223–232 (2003)CrossRefGoogle Scholar
  8. 8.
    Elad, M., Tal, A., Ar, S.: Content based retrieval of vrml objects – an iterative and interactive approach. In: Proc. EG Multimedia, vol. 39, pp. 97–108 (2001)Google Scholar
  9. 9.
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A Search Engine for 3D Models. ACM TOG 22(1), 83–105 (2003)CrossRefGoogle Scholar
  10. 10.
    Haykin, S.: Neural network a comprehensive foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  11. 11.
    He, X., Niyogi, P.: Locality Preserving Projections. In: Advances in Neural Information Processing Systems, Vancouver, Canada, vol. 16 (2003), http://people.cs.uchicago.edu/~xiaofei/LPP.html
  12. 12.
    He, X., Ma, W.-Y., Zhang, H.-J.: Learning an Image Manifold for Retrieval. In: Proc. ACM Multimedia 2004, pp. 17–23 (2004)Google Scholar
  13. 13.
    Iyer, M., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: Three Dimensional Shape Searching: State-of-the-art Review and Future Trends. Computer Aided Design 5(15), 509–530 (2005)CrossRefGoogle Scholar
  14. 14.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation Invariant Spherical Harmonics Representation of 3D Shape Descriptors. In: Proc. Symposium of Geometry Processing 2003, pp. 167–175 (2003), http://www.cs.jhu.edu/~misha/
  15. 15.
    Leifman, G., Meir, R., Tal, A.: Semantic-oriented 3d shape retrieval using relevance feedback. The Visual Computer (Pacific Graphics) 21(8-10), 865–875 (2005)CrossRefGoogle Scholar
  16. 16.
    Novotni, M., Park, G.-J., Wessel, R., Klein R.: Evaluation of Kernel Based Methods for Relevance Feedback in 3D Shape Retrieval. In: Proc. The Fourth International Workshop on Content-Based Multimedia Indexing (CBMI 2005) (2005)Google Scholar
  17. 17.
    NTU 3D Model Database ver.1, http://3d.csie.ntu.edu.tw/
  18. 18.
    Ohbuchi, R., Takei, T.: Shape-Similarity Comparison of 3D Shapes Using Alpha Shapes. In: Proc. Pacific Graphics 2003, pp. 293–302 (2003)Google Scholar
  19. 19.
    Ohbuchi, R., Minamitani, T., Takei, T.: Shape-similarity search of 3D models by using enhanced shape functions. IJCAT 23(3/4/5), 70–85 (2005)CrossRefGoogle Scholar
  20. 20.
    Ohbuchi, R., Kobayashi, J.: Unsupervised Learning from a Corpus for Shape-Based 3D Model Retrieval. In: Proc. ACM MIR 2006, pp. 163–172 (2006)Google Scholar
  21. 21.
    Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  22. 22.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark. In: Proc. SMI 2004, pp. 167–178 (2004), http://shape.cs.princeton.edu/search.html
  23. 23.
    Statistical Pattern Recognition Toolbox for Matlab, http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html
  24. 24.
    Tangelder, J., Veltkamp, R.C.: A Survey of Content Based 3D Shape Retrieval Methods. In: Proc. SMI 2004, pp. 145–156 (2004)Google Scholar
  25. 25.
    Tanenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  26. 26.
    Veltkamp, R.C., Ruijsenaars, R., Spagnuolo, M., Van Zwol, R., ter Haar, F.: SHREC, 3D Shape Retrieval Contest, Utrecht University Dept. Information and Computing Sciences. Technical Report UU-CS-2006-030 (2006), http://give-lab.cs.uu.nl/shrec/shrec2006/index.html, , ISSN: 0924-3275
  27. 27.
    Vranić, D.V.: 3D Model Retrieval, Ph.D. Thesis, University of Leipzig (2004), http://merkur01.inf.uni-konstanz.de/CCCC/
  28. 28.
    Wahl, E., Hillenbrand, U., Hirzinger, G.: Surflet-Pair-Relation Histograms: A Statistical 3D-Shape Representation for Rapid Classification. In: Proc. 3DIM 2003, pp. 474–481 (2003)Google Scholar
  29. 29.
    Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM Journal of Scientific Computing 26(1), 313–338 (2004)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ryutarou Ohbuchi
    • 1
  • Jun Kobayashi
    • 1
    • 2
  • Akihiro Yamamoto
    • 1
    • 2
  • Toshiya Shimizu
    • 1
  1. 1.NEC CorpYamanashi-kenJapan
  2. 2.Fujitsu CorpYamanashi-kenJapan

Personalised recommendations