Automatically Detecting Members and Instrumentation of Music Bands Via Web Content Mining

  • Markus Schedl
  • Gerhard Widmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4918)

Abstract

In this paper, we present an approach to automatically detecting music band members and instrumentation using web content mining techniques. To this end, we combine a named entity detection method with a rule-based linguistic text analysis approach extended by a rule filtering step. We report on the results of different evaluation experiments carried out on two test collections of bands covering a wide range of popularities. The performance of the proposed approach is evaluated using precision and recall measures. We further investigate the influence of different query schemes for the web page retrieval, of a critical parameter used in the rule filtering step, and of different string matching functions which are applied to deal with inconsistent spelling of band members.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alani, H., Kim, S., Millard, D.E., Weal, M.J., Hall, W., Lewis, P.H., Shadbolt, N.R.: Automatic Ontology-Based Knowledge Extraction from Web Documents. IEEE Intelligent Systems 18(1) (2003)Google Scholar
  2. 2.
    Callan, J., Mitamura, T.: Knowledge-Based Extraction of Named Entities. In: Proceedings of the 11th International Conference on Information and Knowledge Management (CIKM 2002), McLean, VA, USA, pp. 532–537. ACM Press, New York (2002)Google Scholar
  3. 3.
    Cano, P., Koppenberger, M.: The Emergence of Complex Network Patterns in Music Artist Networks. In: Proceedings of the 5th International Symposium on Music Information Retrieval (ISMIR 2004), Barcelona, Spain (October 2004)Google Scholar
  4. 4.
    Cimiano, P., Handschuh, S., Staab, S.: Towards the Self-Annotating Web. In: Proceedings of the 13th International Conference on World Wide Web (WWW 2004), pp. 462–471. ACM Press, New York, NY, USA (2004)CrossRefGoogle Scholar
  5. 5.
    Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A Comparison of String Distance Metrics for Name-Matching Tasks. In: Proceedings of the IJCAI 2003 Workshop on Information Integration on the Web (IIWeb 2003), Acapulco, Mexico, August 2003, pp. 73–78 (2003)Google Scholar
  6. 6.
    Goto, M., Goto, T.: Musicream: New Music Playback Interface for Streaming, Sticking, Sorting, and Recalling Musical Pieces. In: Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005), London, UK (September 2005)Google Scholar
  7. 7.
    Hearst, M.A.: Automatic Acquisition of Hyponyms from Large Text Corpora. In: Proceedings of the 14th Conference on Computational Linguistics, Nantes, France, August 1992, vol. 2, pp. 539–545 (1992)Google Scholar
  8. 8.
    Knees, P., Pohle, T., Schedl, M., Widmer, G.: A Music Search Engine Built upon Audio-based and Web-based Similarity Measures. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2007), Amsterdam, The Netherlands, July 23-27 (2007)Google Scholar
  9. 9.
    Knees, P., Schedl, M., Pohle, T., Widmer, G.: An Innovative Three-Dimensional User Interface for Exploring Music Collections Enriched with Meta-Information from the Web. In: Proceedings of the ACM Multimedia 2006 (MM 2006), Santa Barbara, California, USA, October 23-26 (2006)Google Scholar
  10. 10.
    Kumaran, G., Allan, J.: Text Classification and Named Entities for New Event Detection. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2004), pp. 297–304. ACM Press, New York, NY, USA (2004)CrossRefGoogle Scholar
  11. 11.
    Mörchen, F., Ultsch, A., Nöcker, M., Stamm, C.: Databionic Visualization of Music Collections According to Perceptual Distance. In: Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005), London, UK (September 2005)Google Scholar
  12. 12.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. In: Proceedings of the Annual Meeting of the American Society for Information Science (ASIS 1998), January 1998, pp. 161–172 (1998)Google Scholar
  13. 13.
    Schedl, M., Knees, P., Widmer, G.: Discovering and Visualizing Prototypical Artists by Web-based Co-Occurrence Analysis. In: Proceedings of the Sixth International Conference on Music Information Retrieval (ISMIR 2005), London, UK (September 2005)Google Scholar
  14. 14.
    Schedl, M., Pohle, T., Knees, P., Widmer, G.: Assigning and Visualizing Music Genres by Web-based Co-Occurrence Analysis. In: Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR 2006), Victoria, Canada (October 2006)Google Scholar
  15. 15.
    Shinyama, Y., Sekine, S.: Named Entity Discovery Using Comparable News Articles. In: Proceedings of the 20th International Conference on Computational Linguistics (COLING 2004), Morristown, NJ, USA. Association for Computational Linguistics, p. 848 (2004)Google Scholar
  16. 16.
    Vignoli, F., van Gulik, R., van de Wetering, H.: Mapping Music in the Palm of Your Hand, Explore and Discover Your Collection. In: Proceedings of the 5th International Symposium on Music Information Retrieval (ISMIR 2004), Barcelona, Spain (October 2004)Google Scholar
  17. 17.
    Zadel, M., Fujinaga, I.: Web Services for Music Information Retrieval. In: Proceedings of the 5th International Symposium on Music Information Retrieval (ISMIR 2004), Barcelona, Spain (October 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Markus Schedl
    • 1
  • Gerhard Widmer
    • 1
    • 2
  1. 1.Department of Computational PerceptionJohannes Kepler UniversityLinzAustria
  2. 2.Austrian Research Institute for Artificial IntelligenceViennaAustria

Personalised recommendations