Skip to main content

Cough Sensors. IV. Nicotinic Membrane Receptors on Cough Sensors

  • Chapter
Pharmacology and Therapeutics of Cough

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 187))

Abstract

Cigarette smoke is undoubtedly one of the most common inhaled irritants in the human respiratory tract, and invariably evokes coughing in both smokers and nonsmokers. Results obtained from the studies in human volunteers and from single-fiber recording of vagal bronchopulmonary afferents in animals clearly indicate that nicotine is primarily responsible for the airway irritation and coughing caused by inhalation of cigarette smoke. Furthermore, both nicotine and acetylcholine can evoke inward current, membrane depolarization, and action potentials in isolated pulmonary sensory neurons, and these responses are blocked by hexamethonium. Taken together, these findings suggest that the tussive effect of nicotine is probably mediated through an activation of nicotinic acetylcholine receptors (nAChRs) expressed on the sensory terminals of cough receptors located in the airway mucosa. Indeed, the expressions of α4 – α7 and β2 – β4 subunits of nAChR transcripts in pulmonary sensory neurons have lent further support to this conclusion. The specific subtypes of the neuronal nAChRs and their subunit compositions expressed on the cough sensors remain to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agostoni E, Chinnock JE, De Daly MB, Murray JG (1957) Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol 135:182–205

    PubMed  CAS  Google Scholar 

  • Arias HR (2000) Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem Int 36:595–645

    Article  PubMed  CAS  Google Scholar 

  • Barnes PJ, Lundberg JM (1991) Airway neuropeptides and asthma. In Kaliner MA, Barnes PJ, Persson CGA (eds) Lung Biology in Health and Disease Series, Vol. 49: Asthma: Its Pathology and Treatment. Dekker, New York

    Google Scholar 

  • Barnes PJ, Baraniuk JN, Belvisi MG (1991) Neuropeptides in the respiratory tract. I. Am Rev Respir Dis 144:1187–1198

    PubMed  CAS  Google Scholar 

  • Belvisi M (2008) Cough sensors. II. Cannabinoid and opioid membrane receptors on cough sensors. In Chung KF, Widdicombe JG (eds) Pharmacology and Therapeutics of Cough. Springer, Berlin

    Google Scholar 

  • Bergren DR, Sampson SR (1982) Characterization of intrapulmonary, rapidly adapting receptors of guinea pigs. Respir Physiol 47:83–95

    Article  PubMed  CAS  Google Scholar 

  • Bolser DC, DeGennaro FC, O'Reilly S, Hey JA, Chapman RW (1995) Pharmacological studies of allergic cough in the guinea pig. Eur J Pharmacol 277:159–164

    Article  PubMed  CAS  Google Scholar 

  • Boushey HA, Richardson PS, Widdicombe JG, Wise JC (1974) The response of laryngeal afferent fibres to mechanical and chemical stimuli. J Physiol 240:153–175

    PubMed  CAS  Google Scholar 

  • Braman SS (2006) Chronic cough due to chronic bronchitis: ACCP evidence-based clinical practice guidelines. Chest 129:104S–115S

    Article  PubMed  Google Scholar 

  • Bunnelle WH, Dart MJ, Schrimpf MR (2004) Design of ligands for the nicotinic acetylcholine receptors: The quest for selectivity. Curr Top Med Chem 4:299–334

    Article  PubMed  CAS  Google Scholar 

  • Canning BJ (2007) Encoding of the cough reflex. Pulm Pharmacol Ther 20:396–401

    Article  PubMed  CAS  Google Scholar 

  • Canning BJ (2008) Mechanisms. II. Sensory and afferent pathways for cough. In Chung KF, Widdicombe JG (eds) Pharmacology and Therapeutics of Cough. Springer, Berlin

    Google Scholar 

  • Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ (2004) Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J Physiol 557:543–558

    Article  PubMed  CAS  Google Scholar 

  • Canning BJ, Mori N, Mazzone SB (2006) Vagal afferent nerves regulating the cough reflex. Respir Physiol Neurobiol 152:223–242

    Article  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  • Changeux JP, Edelstein SJ (1998) Allosteric receptors after 30 years. Neuron 21:959–980

    Article  PubMed  CAS  Google Scholar 

  • Cho YS, Park SY, Lee CK, Yoo B, Moon HB (2003) Elevated substance P levels in nasal lavage fluids from patients with chronic nonproductive cough and increased cough sensitivity to inhaled capsaicin. J Allergy Clin Immunol 112:695–701

    Article  PubMed  CAS  Google Scholar 

  • Coleridge HM, Coleridge JCG (1986) Reflexes evoked from tracheobronchial tree and lungs. In Cherniak NS, Widdicombe JG (eds) Handbook of Physiology, Section 3: The Respiratory System, Vol. II: Control of Breathing, Part I. American Physiological Society, Washington, DC, pp 395–429

    Google Scholar 

  • Coleridge JCG, Coleridge HM (1984) Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 99:1–110

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun LM, Patrick JW (1997) Pharmacology of neuronal nicotinic acetylcholine receptor subtypes. Adv Pharmacol 39:191–220

    Article  PubMed  CAS  Google Scholar 

  • Dey RD, Altemus JB, Rodd A, Mayer B, Said SI, Coburn RF (1996) Neurochemical characterization of intrinsic neurons in ferret tracheal plexus. Am J Respir Cell Mol Biol 14:207–216

    PubMed  CAS  Google Scholar 

  • Dicpinigaitis PV (2003) Cough reflex sensitivity in cigarette smokers. Chest 123:685–688

    Article  PubMed  Google Scholar 

  • Dicpinigaitis PV (2007) Experimentally induced cough. Pulm Pharmacol Ther 20:319–324

    Article  PubMed  CAS  Google Scholar 

  • Douglas WW (1952) The effect of a ganglion-blocking drug, hexamethonium, on the response of the cat's carotid body to various stimuli. J Physiol 118:373–383

    PubMed  CAS  Google Scholar 

  • Douglas WW, Gray JA (1953) The excitant action of acetylcholine and other substances on cutaneous sensory pathways and its prevention by hexamethonium and D-tubocurarine. J Physiol 119:118–128

    PubMed  CAS  Google Scholar 

  • Foreman JC, Jordan CC, Piotrowski W (1982) Interaction of neurotensin with the substance P receptor mediating histamine release from rat mast cells and the flare in human skin. Br J Pharmacol 77:531–539

    PubMed  CAS  Google Scholar 

  • Fucile S, Sucapane A, Eusebi F (2005) Ca2+ permeability of nicotinic acetylcholine receptors from rat dorsal root ganglion neurones. J Physiol 565:219–228

    Article  PubMed  CAS  Google Scholar 

  • Gatto GJ, Bohme GA, Caldwell WS, Letchworth SR, Traina VM, Obinu MC, Laville M, Reibaud M, Pradier L, Dunbar G, Bencherif M (2004) TC-1734: An orally active neuronal nicotinic acetylcholine receptor modulator with antidepressant, neuroprotective and long-lasting cognitive effects. CNS Drug Rev 10:147–166

    PubMed  CAS  Google Scholar 

  • Genzen JR, Van Cleve W, McGehee DS (2001) Dorsal root ganglion neurons express multiple nicotinic acetylcholine receptor subtypes. J Neurophysiol 86:1773–1782

    PubMed  CAS  Google Scholar 

  • Geppetti P (2008) Cough sensors. I. TRP membrane receptors on cough sensors. In Chung KF, Widdicombe JG (eds) Pharmacology and Therapeutics of Cough. Springer, Berlin

    Google Scholar 

  • Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: Molecular mechanisms and cellular consequences. Science 268:239–247

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Clementi F (2004) Neuronal nicotinic receptors: From structure to pathology. Prog Neu-robiol 74:363–396

    Article  CAS  Google Scholar 

  • Gotti C, Fornasari D, Clementi F (1997) Human neuronal nicotinic receptors. Prog Neurobiol 53:199–237

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: Native subtypes and their relevance. Trends Pharmacol Sci 27:482–491

    Article  PubMed  CAS  Google Scholar 

  • Grinevich VP, Letchworth SR, Lindenberger KA, Menager J, Mary V, Sadieva KA, Buhlman LM, Bohme GA, Pradier L, Benavides J, Lukas RJ, Bencherif M (2005) Heterologous expression of human {alpha}6{beta}4{beta}3{alpha}5 nicotinic acetylcholine receptors: Binding properties consistent with their natural expression require quaternary subunit assembly including the {alpha}5 subunit. J Pharmacol Exp Ther 312:619–626

    Article  PubMed  CAS  Google Scholar 

  • Groneberg DA, Niimi A, Dinh QT, Cosio B, Hew M, Fischer A, Chung KF (2004) Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. Am J Respir Crit Care Med 170:1276–1280

    Article  PubMed  Google Scholar 

  • Gu Q, Ni D, Lee LY (2008) Expression of neuronal nicotinic acetylcholine receptors in rat vagal pulmonary sensory neurons. Respir Physiol Neurobiol 161:87–91

    Article  PubMed  CAS  Google Scholar 

  • Hansson L, Wollmer P, Dahlback M, Karlsson JA (1992) Regional sensitivity of human airways to capsaicin-induced cough. Am Rev Respir Dis 145:1191–1195

    PubMed  CAS  Google Scholar 

  • Hartiala JJ, Mapp C, Mitchell RA, Gold WM (1985) Nicotine-induced respiratory effects of cigarette smoke in dogs. J Appl Physiol 59:64–71

    PubMed  CAS  Google Scholar 

  • Henningfield JE, Miyasato K, Jasinski DR (1985) Abuse liability and pharmacodynamic characteristics of intravenous and inhaled nicotine. J Pharmacol Exp Ther 234:1–12

    PubMed  CAS  Google Scholar 

  • Hirota CL, McKay DM (2006) Cholinergic regulation of epithelial ion transport in the mammalian intestine. Br J Pharmacol 149:463–479

    Article  PubMed  CAS  Google Scholar 

  • Ho CY, Gu Q, Lin YS, Lee LY (2001) Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respir Physiol 127:113–124

    Article  PubMed  CAS  Google Scholar 

  • Hogg RC, Bertrand D (2004) Nicotinic acetylcholine receptors as drug targets. Curr Drug Targets CNS Neurol Disord 3:123–130

    Article  PubMed  CAS  Google Scholar 

  • Hong JL, Rodger IW, Lee LY (1995) Cigarette smoke-induced bronchoconstriction: Cholinergic mechanisms, tachykinins, and cyclooxygenase products. J Appl Physiol 78:2260–2266

    Article  PubMed  CAS  Google Scholar 

  • Jain KK (2004) Modulators of nicotinic acetylcholine receptors as analgesics. Curr Opin Invest Drugs 5:76–81

    CAS  Google Scholar 

  • Jammes Y, Fornaris E, Mei N, Barrat E (1982) Afferent and efferent components of the bronchial vagal branches in cats. J Auton Nerv Syst 5:165–176

    Article  PubMed  CAS  Google Scholar 

  • Jensen AA, Frolund B, Liljefors T, Krogsgaard-Larsen P (2005) Neuronal nicotinic acetylcholine receptors: Structural revelations, target identifications, and therapeutic inspirations. J Med Chem 48:4705–4745

    Article  PubMed  CAS  Google Scholar 

  • Joad JP, Kott KS, Bonham AC (1997) Nitric oxide contributes to substance P-induced increases in lung rapidly adapting receptor activity in guinea-pigs. J Physiol 503:635–643

    Article  PubMed  CAS  Google Scholar 

  • Joos GF, Germonpre PR, Pauwels RA (2000) Role of tachykinins in asthma. Allergy 55:321–337

    Article  PubMed  CAS  Google Scholar 

  • Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouri-dakis M, Tzartos SJ (2007) Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J 274:3799–3845

    Article  PubMed  CAS  Google Scholar 

  • Kappagoda CT, Ravi K (2006) The rapidly adapting receptors in mammalian airways and their responses to changes in extravascular fluid volume. Exp Physiol 91:647–654

    Article  PubMed  CAS  Google Scholar 

  • Karlsson JA, Fuller RW (1999) Pharmacological regulation of the cough reflex – from experimental models to antitussive effects in man. Pulm Pharmacol Ther 12:215–228

    Article  PubMed  CAS  Google Scholar 

  • Karlsson JA, Hansson L, Wollmer P, Dahlback M (1991) Regional sensitivity of the respiratory tract to stimuli causing cough and reflex bronchoconstriction. Respir Med 85(Suppl A):47–50

    Article  PubMed  Google Scholar 

  • Katsumata U, Sekizawa K, Inoue H, Sasaki H, Takishima T (1989) Inhibitory actions of procaterol, a beta-2 stimulant, on substance P-induced cough in normal subjects during upper respiratory tract infection. Tohoku J Exp Med 158:105–106

    Article  PubMed  CAS  Google Scholar 

  • Kohrogi H, Graf PD, Sekizawa K, Borson DB, Nadel JA (1988) Neutral endopeptidase inhibitors potentiate substance P- and capsaicin-induced cough in awake guinea pigs. J Clin Invest 82:2063–2068

    Article  PubMed  CAS  Google Scholar 

  • Komatsu T, Yamamoto M, Shimokata K, Nagura H (1991) Distribution of substance P-immunoreactive and calcitonin gene-related peptide-immunoreactive nerves in normal human lungs. Int Arch Allergy Appl Immunol 95:23–28

    PubMed  CAS  Google Scholar 

  • Kostyuk P, Verkhratsky A (1994) Calcium stores in neurons and glia. Neuroscience 63:381–404

    Article  PubMed  CAS  Google Scholar 

  • Kou YR, Lee LY (1990) Stimulation of rapidly adapting receptors in canine lungs by a single breath of cigarette smoke. J Appl Physiol 68:1203–1210

    PubMed  CAS  Google Scholar 

  • Kou YR, Lee LY (1991) Mechanisms of cigarette smoke-induced stimulation of rapidly adapting receptors in canine lungs. Respir Physiol 83:61–75

    Article  PubMed  CAS  Google Scholar 

  • Kou YR, Frazier DT, Lee LY (1989) The stimulatory effect of nicotine on vagal pulmonary C-fibers in dogs. Respir Physiol 76:347–356

    Article  PubMed  CAS  Google Scholar 

  • Kwong K, Lee LY (2002) PGE(2) sensitizes cultured pulmonary vagal sensory neurons to chemical and electrical stimuli. J Appl Physiol 93:1419–1428

    PubMed  CAS  Google Scholar 

  • Lee LY, Pisarri TE (2001) Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol 125:47–65

    Article  PubMed  CAS  Google Scholar 

  • Lee LY, Sant'Ambrogio FB, Mathew OP, Sant'Ambrogio G (1987) Acute effect of cigarette smoke on laryngeal receptors. J Appl Physiol 62:1575–1581

    PubMed  CAS  Google Scholar 

  • Lee LY, Kou YR, Frazier DT, Beck ER, Pisarri TE, Coleridge HM, Coleridge JC (1989) Stimulation of vagal pulmonary C-fibers by a single breath of cigarette smoke in dogs. J Appl Physiol 66:2032–2038

    Article  PubMed  CAS  Google Scholar 

  • Lee LY, Gerhardstein DC, Wang AL, Burki NK (1993) Nicotine is responsible for airway irritation evoked by cigarette smoke inhalation in men. J Appl Physiol 75:1955–1961

    PubMed  CAS  Google Scholar 

  • Lee LY, Lou YP, Hong JL, Lundberg JM (1995) Cigarette smoke-induced bronchoconstriction and release of tachykinins in guinea pig lungs. Respir Physiol 99:173–181

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Zhu W, Zhang ZS, Yang T, Grant A, Oxford G, Simon SA (2004) Nicotine inhibits voltage-dependent sodium channels and sensitizes vanilloid receptors. J Neurophysiol 91:1482–1491

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Fujimura M, Tachibana H, Myou S, Kasahara K, Yasui M (2001) Characterization of increased cough sensitivity after antigen challenge in guinea pigs. Clin Exp Allergy 31:474–484

    Article  PubMed  CAS  Google Scholar 

  • Llinas R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presy-naptic terminal. Science 256:677–679

    Article  PubMed  CAS  Google Scholar 

  • Lundberg JM, Saria A (1987) Polypeptide-containing neurons in airway smooth muscle. Annu Rev Physiol 49:557–572

    Article  PubMed  CAS  Google Scholar 

  • Mazzone SB (2004) Sensory regulation of the cough reflex. Pulm Pharmacol Ther 17:361–368

    Article  PubMed  CAS  Google Scholar 

  • Mazzone SB, Undem BJ (2008) Cough sensors V: Pharmacological modulation of cough sensors. In Chung KF, Widdicombe JG (eds) Pharmacology and Therapeutics of Cough. Springer, Berlin

    Google Scholar 

  • Mazzone SB, Mori N, Canning BJ (2005) Synergistic interactions between airway afferent nerve subtypes regulating the cough reflex in guinea-pigs. J Physiol 569:559–573

    Article  PubMed  CAS  Google Scholar 

  • Millqvist E, Bende M (2001) Capsaicin cough sensitivity is decreased in smokers. Respir Med 95:19–21

    Article  PubMed  CAS  Google Scholar 

  • Nadel JA, Comroe JH Jr. (1961) Acute effects of inhalation of cigarette smoke on airway conductance. J Appl Physiol 16:713–716

    PubMed  CAS  Google Scholar 

  • Nguyen LS, Villablanca AC, Rutledge JC (1995) Substance P increases microvascular permeability via nitric oxide-mediated convective pathways. Am J Physiol 268:R1060–R1068

    PubMed  CAS  Google Scholar 

  • Page NM (2004) Hemokinins and endokinins. Cell Mol Life Sci 61:1652–1663

    Article  PubMed  CAS  Google Scholar 

  • Paintal AS (1954) The response of gastric stretch receptors and certain other abdominal and thoracic vagal receptors to some drugs. J Physiol 126:271–285

    PubMed  CAS  Google Scholar 

  • Paintal AS (1955) Impulses in vagal afferent fibres from specific pulmonary deflation receptors: The response of these receptors to phenyl diguanide, potato starch, 5-hydroxytryptamine and nicotine, and their role in respiratory and cardiovascular reflexes. Q J Exp Physiol Cogn Med Sci 40:89–111

    PubMed  CAS  Google Scholar 

  • Pisarri TE, Lee LY, Coleridge HM, Coleridge JCG (1991) Stimulation of vagal bronchial C-fibers by cigarette smoke in dogs (Abstract). FASEB J 5:A1480

    Google Scholar 

  • Ray M, Bohr I, McIntosh JM, Ballard C, McKeith I, Chalon S, Guilloteau D, Perry R, Perry E, Court JA, Piggott M (2004) Involvement of alpha6/alpha3 neuronal nicotinic acetylcholine receptors in neuropsychiatric features of Dementia with Lewy bodies: [(125)I]-alpha-conotoxin MII binding in the thalamus and striatum. Neurosci Lett 372:220–225

    Article  PubMed  CAS  Google Scholar 

  • Robitaille R, Garcia ML, Kaczorowski GJ, Charlton MP (1993) Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron 11:645– 655

    Article  PubMed  CAS  Google Scholar 

  • Romanelli MN, Gualtieri F (2003) Cholinergic nicotinic receptors: Competitive ligands, allosteric modulators, and their potential applications. Med Res Rev 23:393–426

    Article  PubMed  CAS  Google Scholar 

  • Sampson SR, Vidruk EH (1975) Properties of ‘irritant’ receptors in canine lung. Respir Physiol 25:9–22

    Article  PubMed  CAS  Google Scholar 

  • Sant'Ambrogio G (1982) Information arising from the tracheobronchial tree of mammals. Physiol Rev 62:531–569

    PubMed  Google Scholar 

  • Sant'Ambrogio G, Widdicombe JG (2001) Reflexes from airway rapidly adapting receptors. Respir Physiol 125:33–45

    Article  PubMed  Google Scholar 

  • Sant'Ambrogio G, Tsubone H, Sant'Ambrogio FB (1995) Sensory information from the upper airway: Role in the control of breathing. Respir Physiol 102:1–16

    Article  PubMed  Google Scholar 

  • Sekizawa K, Jia YX, Ebihara T, Hirose Y, Hirayama Y, Sasaki H (1996) Role of substance P in cough. Pulm Pharmacol 9:323–328

    Article  PubMed  CAS  Google Scholar 

  • Sellick H, Widdicombe JG (1971) Stimulation of lung irritant receptors by cigarette smoke, carbon dust, and histamine aerosol. J Appl Physiol 31:15–19

    PubMed  CAS  Google Scholar 

  • Simpson PB, Challiss RA, Nahorski SR (1995) Neuronal Ca2+ stores: Activation and function. Trends Neurosci 18:299–306

    Article  PubMed  CAS  Google Scholar 

  • Solway J, Leff AR (1991) Sensory neuropeptides and airway function. J Appl Physiol 71: 2077–2087

    PubMed  CAS  Google Scholar 

  • Takahama K (2008) Central mechanisms. III. Mechanisms of action of centrally-acting antitus-sives. In Chung KF, Widdicombe JG (eds) Pharmacology and Therapeutics of Cough. Springer, Berlin

    Google Scholar 

  • Tarlo SM (2006) Cough: Occupational and environmental considerations: ACCP evidence-based clinical practice guidelines. Chest 129:186S–196S

    Article  PubMed  Google Scholar 

  • Tatar M, Webber SE, Widdicombe JG (1988) Lung C-fibre receptor activation and defensive reflexes in anaesthetized cats. J Physiol 402:411–420

    PubMed  CAS  Google Scholar 

  • Tobin MJ, Sackner MA (1982) Monitoring smoking patterns of low and high tar cigarettes with inductive plethysmography. Am Rev Respir Dis 126:258–264

    PubMed  CAS  Google Scholar 

  • Undem BJ, Chuaychoo B, Lee MG, Weinreich D, Myers AC, Kollarik M (2004) Subtypes of vagal afferent C-fibres in guinea-pig lungs. J Physiol 556:905–917

    Article  PubMed  CAS  Google Scholar 

  • Widdicombe JG (1954) Receptors in the trachea and bronchi of the cat. J Physiol 123:71–104

    PubMed  CAS  Google Scholar 

  • Widdicombe JG (1981) Nerve receptors in the respiratory tree and lungs. In Hornbein T (ed) Lung Biology in Health and Disease. Regulation of Breathing. Dekker, New York, chap 6

    Google Scholar 

  • Widdicombe JG (1998) Afferent receptors in the airways and cough. Respir Physiol 114:5–15

    Article  PubMed  CAS  Google Scholar 

  • Widdicombe JG, Chung KF (eds) (2004) The third international symposium on cough: Acute and chronic. Pulm Pharmacol Ther 17:327–474

    Google Scholar 

  • Widdicombe JG, Undem BJ (eds) (2006) Cough and its regulation. Respir Physiol Neurobiol 152:221–372

    Google Scholar 

  • Widdicombe JG, Chung KF (eds) (2007) The fourth international symposium on cough: Acute and chronic. Pulm Pharmacol Ther 20:305–452

    Google Scholar 

  • Widdicombe JG, Sant'Ambrogio G, Mathew OP (1988) Nerve receptors of the upper airway. In Mathew OP, Sant'Ambrogio G (eds) Respiratory Function of the Upper Airway. Dekker, New York

    Google Scholar 

  • Winning AJ, Hamilton RD, Shea SA, Guz A (1986) Respiratory and cardiovascular effects of central and peripheral intravenous injections of capsaicin in man: Evidence for pulmonary chemosensitivity. Clin Sci (Lond) 71:519–526

    CAS  Google Scholar 

  • Xu J, Yang W, Zhang G, Gu Q, Lee LY (2007) Calcium transient evoked by nicotine in isolated rat vagal pulmonary sensory neurons. Am J Physiol Lung Cell Mol Physiol 292:L54–L61

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, L.Y., Gu, Q. (2009). Cough Sensors. IV. Nicotinic Membrane Receptors on Cough Sensors. In: Chung, K.F., Widdicombe, J. (eds) Pharmacology and Therapeutics of Cough. Handbook of Experimental Pharmacology, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79842-2_5

Download citation

Publish with us

Policies and ethics