Feature Selection with Fuzzy Decision Reducts

  • Chris Cornelis
  • Germán Hurtado Martín
  • Richard Jensen
  • Dominik Ślȩzak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5009)


In this paper, within the context of fuzzy rough set theory, we generalize the classical rough set framework for data-based attribute selection and reduction, based on the notion of fuzzy decision reducts. Experimental analysis confirms the potential of the approach.


fuzzy sets rough sets decision reducts classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, D., Tsang, E., Zhao, S.: An approach of attributes reduction based on fuzzy rough sets. In: IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 486–491 (2007)Google Scholar
  2. 2.
    Chen, D., Tsang, E., Zhao, S.: Attribute Reduction Based on Fuzzy Rough Sets. In: Int. Conf. on Rough Sets and Intelligent Systems Paradigms, pp. 381–390 (2007)Google Scholar
  3. 3.
    Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute selection. IEEE Transactions on Fuzzy Systems 15(1), 73–89 (2007)CrossRefGoogle Scholar
  4. 4.
    Jensen, R., Shen, Q.: New approaches to fuzzy-rough feature selection. IEEE Transactions on Fuzzy Systems (to appear)Google Scholar
  5. 5.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Radzikowska, A., Kerre, E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137–156 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Information Systems. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  8. 8.
    Wang, X., Tsang, E., Zhao, S., Chen, D., Yeung, D.: Learning fuzzy rules from fuzzy samples based on rough set technique. Information Sciences 177, 4493–4514 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  10. 10.
    Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Chris Cornelis
    • 1
  • Germán Hurtado Martín
    • 1
    • 2
  • Richard Jensen
    • 3
  • Dominik Ślȩzak
    • 4
  1. 1.Dept. of Mathematics and Computer ScienceGhent UniversityGentBelgium
  2. 2.Dept. of Industrial SciencesHogeschool GentGentBelgium
  3. 3.Dept. of Computer ScienceThe University of WalesAberystwythUK
  4. 4.Infobright Inc.TorontoCanada

Personalised recommendations