Case-Based Reasoning Using Gradual Rules Induced from Dominance-Based Rough Approximations

  • Salvatore Greco
  • Benedetto Matarazzo
  • Roman Słowiński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5009)


Case-based reasoning (CBR) regards the inference of some proper conclusions related to a new situation by the analysis of similar cases from a memory of previous cases. We propose to represent similarity by gradual decision rules induced from rough approximations of fuzzy sets. Indeed, we are adopting the Dominance-based Rough Set Approach (DRSA) that is particularly appropriate in this context for its ability of handling monotonicity relationship of the type “the more similar is object y to object x, the more credible is that y belongs to the same set as x”. At the level of marginal similarity concerning single features, we consider only ordinal properties of similarity, and for the aggregation of marginal similarities, we use a set of gradual decision rules based on the general monotonicity property of comprehensive similarity with respect to marginal similarities. We present formal properties of rough approximations used for CBR.


Single Feature Decision Attribute Monotonic Relationship Granular Computing Ordinal Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dubois, D., Prade, H., Esteva, F., Garcia, P., Godo, L., Lopez de Mantara, R.: Fuzzy Set Modelling in Case-based Reasoning. International Journal of Intelligent Systems 13, 345–373 (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    Gilboa, I., Schmeidler, D.: A Theory of Case-Based Decisions. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  3. 3.
    Greco, S., Inuiguchi, M., Słowiński, R.: Fuzzy rough sets and multiple-premise gradual decision rules. International Journal of Approximate Reasoning 41, 179–211 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Greco, S., Matarazzo, B., Słowiński, R.: The use of rough sets and fuzzy sets in MCDM. In: Gal, T., Stewart, T., Hanne, T. (eds.) Advances in Multiple Criteria Decision Making, ch. 14, p. 14.1–14.59. Kluwer Academic Publishers, Boston (1999)Google Scholar
  5. 5.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129, 1–47 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-Based Rough Set Approach to Knowledge Discovery (I) - General Perspective, ch. 20, and (II) - Extensions and Applications, ch. 21. In: Zhong, N., Liu, J. (eds.) Intelligent Technologies for Information Analysis, pp. 513–612. Springer, Berlin (2004)Google Scholar
  7. 7.
    Greco, S., Matarazzo, B., Słowiński, R.: Decision rule approach, ch. 13. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 507–563. Springer, Berlin (2005)CrossRefGoogle Scholar
  8. 8.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-Based Rough Set Approach to Case-Based Reasoning. In: Torra, V., Narukawa, Y., Valls, A., Domingo-Ferrer, J. (eds.) MDAI 2006. LNCS (LNAI), vol. 3885, pp. 7–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-Based Rough Set Approach as a Proper Way of Handling Graduality in Rough Set Theory. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 36–52. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Greco, S., Matarazzo, B., Słowiński, R.: Granular computing for reasoning about ordered data: the dominance-based rough set approach. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, ch. 15, John Wiley & Sons, New York (2008)Google Scholar
  11. 11.
    Hume, D.: An Enquiry Concerning Human Understanding. Clarendon Press, Oxford (1748)Google Scholar
  12. 12.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  13. 13.
    Pawlak, Z.: Rough Sets. Kluwer, Dordrecht (1991)zbMATHGoogle Scholar
  14. 14.
    Słowiński, R., Greco, S., Matarazzo, B.: Rough set based decision support. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, ch. 16, pp. 475–527. Springer, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Salvatore Greco
    • 1
  • Benedetto Matarazzo
    • 1
  • Roman Słowiński
    • 2
  1. 1.Faculty of EconomicsUniversity of CataniaCataniaItaly
  2. 2.Institute of Computing SciencePoznań University of Technology, 60-965 Poznań, and Systems Research Institute, Polish Academy of SciencesWarsawPoland

Personalised recommendations