Advertisement

Algebraic Structures for Dominance-Based Rough Set Approach

  • Salvatore Greco
  • Benedetto Matarazzo
  • Roman Słowiński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5009)

Abstract

Dominance-based Rough Set Approach (DRSA) has been proposed to generalize classical rough set approach when monotonicity between memberships to considered concepts has to be taken into account. This is typical for data describing various phenomena, e.g., “the larger the mass and the smaller the distance, the larger the gravity”. These monotonicity relationships are fundamental in rough set approach to multiple criteria decision analysis. In this paper, we propose an algebraic structure for DRSA.

Keywords

Distributive Lattice Algebraic Structure Multiple Criterion Decision Monotonic Relationship Algebraic Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cattaneo, G., Giuntini, R., Pilla, R.: BZMVdM algebras and stonian MV-algebras (applications to fuzzy sets and rough approximations). Fuzzy Sets and Systems 108, 201–222 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cattaneo, G., Ciucci, D.: Algebraic Structures for Rough Sets. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 208–252. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough set theory for multicriteria decision analysis. European Journal of Operational Research 129, 1–47 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Greco, S., Matarazzo, B., Słowiński, R.: Decision rule approach. In: Figueira, J., Greco, S., Erghott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 507–563. Springer, Berlin (2005)CrossRefGoogle Scholar
  5. 5.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-Based Rough Set Approach as a Proper Way of Handling Graduality in Rough Set Theory. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 36–52. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Pawlak, Z.: Rough Sets. Kluwer, Dordrecht (1991)zbMATHGoogle Scholar
  8. 8.
    Słowiński, R., Greco, S., Matarazzo, B.: Rough set based decision support. In: Burke, E., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, ch. 16, pp. 475–527. Springer, New York (2005)Google Scholar
  9. 9.
    Vakarelov, D.: Consequence Relations and Information Systems. In: Słowiński, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, pp. 391–399. Kluwer, Dordrecht (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Salvatore Greco
    • 1
  • Benedetto Matarazzo
    • 1
  • Roman Słowiński
    • 2
  1. 1.Faculty of EconomicsUniversity of CataniaCataniaItaly
  2. 2.Institute of Computing SciencePoznań University of Technology, 60-965 Poznań, and Institute for Systems Research, Polish Academy of SciencesWarsawPoland

Personalised recommendations