Advertisement

On the Idea of Using Granular Rough Mereological Structures in Classification of Data

  • Lech Polkowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5009)

Abstract

This paper is devoted to an exposition of the idea of using granular structures obtained from data in the classification tasks of these data into decision classes. Classifiers are induced from granular reflections of data sets.

Keywords

rough sets granulation of knowledge rough inclusions granular classifiers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    Artiemjew, P.: Classifiers from granulated data sets: Concept dependent and layered granulation. In: Rough Sets in Knowledge Discovery RSKD 2007. Workshop at European Conference on Machine Learning/International Conference on Principles of Knowledge Discovery in Data ECML/PKDD 2007, pp. 1–9. Warsaw Univ. Press, Warsaw (2007)Google Scholar
  2. [A2]
    Artiemjew, P.: On classification of data by means of rough mereological granules of objects and rules. In: RSKT 2008. LNCS (LNAI) (in print, 2008)Google Scholar
  3. [A3]
    Artiemjew, P.: Rough mereological classifiers obtained from weak rough inclusions. In: RSKT 2008. LNCS (LNAI) (in print, 2008)Google Scholar
  4. [Ba]
    Bazan, J.G.: A comparison of dynamic and non–dynamic rough set methods for extracting laws from decision tables. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 1, pp. 321–365. Physica Verlag, Heidelberg (1998)Google Scholar
  5. [H]
    Nguyen, S.H.: Regularity analysis and its applications in Data Mining. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 289–378. Physica Verlag, Heidelberg (2000)Google Scholar
  6. [Po1]
    Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk). In: Hu, X., Liu, Q., Skowron, A., Lin, T.Y., Yager, R.R., Zhang, B. (eds.) IEEE GrC 2005, pp. 57–62. IEEE Press, Piscataway (2005)CrossRefGoogle Scholar
  7. [Po2]
    Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk). In: Zhang, Y.-Q., Lin, T.Y. (eds.) IEEE GrC 2006, pp. 9–18. IEEE Press, Piscataway (2006)CrossRefGoogle Scholar
  8. [Po3]
    Polkowski, L.: On the idea of using granular rough mereological structures in classification of data. In: RSKT 2008. LNCS (LNAI), vol. 5009, Springer, Heidelberg (in print, 2008)Google Scholar
  9. [PoA]
    Polkowski, L., Artiemjew, P.: On granular rough computing: Factoring clasifiers through granular structures. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 280–290. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. [RSES]
  11. [UCI]
  12. [Wr]
    Wróblewski, J.: Adaptive aspects of combining approximation spaces. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough Neural Computing, pp. 139–156. Springer, Berlin (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Lech Polkowski
    • 1
  1. 1.Polish-Japanese Institute of Information TechnologyWarsawPoland

Personalised recommendations