Advertisement

Rough Mereology in Analysis of Vagueness

  • Lech Polkowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5009)

Abstract

This work aims at presenting to a wider audience fundamental notions and ideas of rough mereology. We discuss various methods for constructing rough inclusions in data sets, then we show how to apply them to the task of knowledge granulation, and finally, we introduce granular reflections of data sets with examples of classifiers built on them.

Keywords

rough sets knowledge granulation rough mereology rough inclusions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artiemjew, P.: On classification of data by means of rough mereological granules of objects and rules. In: RSKT 2008. LNCS (LNAI), vol. 5009, Springer, Heidelberg (in print, 2008)Google Scholar
  2. 2.
    Artiemjew, P.: Rough mereological classifiers obtained from weak rough inclusions. In: RSKT 2008. LNCS (LNAI), vol. 5009, Springer, Heidelberg (in print, 2008)Google Scholar
  3. 3.
    Leśniewski, S.: On the foundations of set theory. Topoi 2, 7–52 (1982)Google Scholar
  4. 4.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)zbMATHGoogle Scholar
  5. 5.
    Poincare, H.: Science et Hypoth\(\grave{e}\)se, Paris (1905)Google Scholar
  6. 6.
    Polkowski, L.: Rough Sets. In: Mathematical Foundations, Physica Verlag, Heidelberg (2002)Google Scholar
  7. 7.
    Polkowski, L.: Toward rough set foundations. Mereological approach (a plenary lecture). In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 8–25. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk). In: Hu, X., Liu, Q., Skowron, A., Lin, T.Y., Yager, R.R., Zhang, B. (eds.) IEEE GrC 2005, pp. 57–62. IEEE Press, Piscataway (2005)CrossRefGoogle Scholar
  9. 9.
    Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk). In: Zhang, Y.-Q., Lin, T.Y. (eds.) IEEE GrC 2006, pp. 9–18. IEEE Press, Piscataway (2006)CrossRefGoogle Scholar
  10. 10.
    Polkowski, L.: The paradigm of granular rough computing. In: Zhang, D., Wang, Y., Kinsner, W. (eds.) ICCI 2007, pp. 145–163. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  11. 11.
    Polkowski, L.: On the idea of using granular rough mereological structures in classification of data. In: RSKT 2008. LNCS (LNAI), vol. 5009, Springer, Heidelberg (in print, 2008)Google Scholar
  12. 12.
    Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1997)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Polkowski, L., Skowron, A., Żytkow, J.: Tolerance based rough sets. In: Lin, T.Y., Wildberger, M.A. (eds.) Soft Computing:Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, pp. 55–58. Simulation Councils, Inc., San Diego (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Lech Polkowski
    • 1
  1. 1.Polish–Japanese Institute of Information TechnologyWarsawPoland

Personalised recommendations