Fast Knowledge Reduction Algorithms Based on Quick Sort

  • Feng Hu
  • Guoyin Wang
  • Lin Feng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5009)


Many researchers are working on developing fast data mining methods for processing huge data sets efficiently. In this paper, we develop some efficient algorithms for knowledge reduction based on rough sets. In these algorithms we use the fact that the average time complexity for the quick sort algorithm for a two dimensions table with n rows and m columns is just n×(m + logn) (not m×n×logn). Experiment results also show the efficiency of these algorithms.


Huge data Knowledge reduction Rough set Quick sort Divide and conquer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Skowron, A., Rauszer, C.: The Discernibility Functions Matrics and Functions in Information Systems. In: Slowinski, R. (ed.) Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets Theory, pp. 331–362. Kluwer Academic Publisher, Dordrecht (1992)Google Scholar
  3. 3.
    Hu, X.H., Cercone, N.: Learning in Relational Database: A Rough Set Approach. International Journal of Computional Intelligence 11(2), 323–338 (1995)Google Scholar
  4. 4.
    Nguyen, H.S., Nguyen, S.H.: Some Efficient Algorithms for Rough Set Methods. In: The Sixth International Conference, Information Procesing and Management of Uncertainty in Knowledge-Based Systems (IPMU 1996), Granada, Spain, July 1-5, 1996, vol. 2, pp. 1451–1456 (1996)Google Scholar
  5. 5.
    Wang, G.Y., Yu, H., Yang, D.C.: Decision Table Reduction Based on Conditional Information Entropy. Chinese Journal of computers 25(7), 759–766 (2002)MathSciNetGoogle Scholar
  6. 6.
    Liu, S.H., Cheng, Q.J., Shi, Z.Z.: A New Method for Fast Computing Positve Region. Journal of Computer Research and Development 40(5), 637–642 (2003)Google Scholar
  7. 7.
    Wang, J., Wang, J.: Reduction Algorithms Based on Discernibility Matrix: the Ordered Attributed Method. Journal of Computer Science and Technology 11(6), 489–504 (2001)CrossRefGoogle Scholar
  8. 8.
    Zhao, M., Wang, J.: The Data Description Based on Reduct. PhD Thesis, Institute of Automation, Chinese Academy of Sciences. Beijing, China (in Chinese) (2004)Google Scholar
  9. 9.
    Mikhail, J.M., Marcin, P., Beata, Z.: On Partial Covers, Reducts and Decision Rules with Weights. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 211–246. Springer, Heidelberg (2007)Google Scholar
  10. 10.
    Qin, Z.R., Wu, Y., Wang, G.Y.: A Partition Algorithm for Huge Data Sets Based on Rough Set. Pattern Recognition and Artificial Intelligence 19(2), 249–256 (2006)Google Scholar
  11. 11.
    Hu, F., Wang, G.Y.: Analysis of the Complexity of Quick Sort for Two Dimension Table. Chinese Journal of Computers 30(6), 963–968 (2007) (in Chinese)MathSciNetGoogle Scholar
  12. 12.
    Hu, F., Wang, G.Y., Xia, Y.: Attribute Core Computation Based on Divide and Conquer Method. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 310–319. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Wang, G.Y.: Rough Set Theory and Knowledge Acquisition. Xi’an Jiaotong University Press, Xi’an (2001) (in Chinese)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Feng Hu
    • 1
    • 2
  • Guoyin Wang
    • 1
    • 2
  • Lin Feng
    • 1
    • 2
  1. 1.School of Information Science and TechnologySouthwest Jiaotong UniversityChengduP.R. China
  2. 2.Institute of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqingP.R. China

Personalised recommendations