Adaptive Classification with Jumping Emerging Patterns

  • Pawel Terlecki
  • Krzysztof Walczak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5009)


In this paper a generic adaptive classification scheme based on a classifier with reject option is proposed. A testing set is considered iteratively, accepted, semi-labeled cases are used to modify the underlying hypothesis and improve its accuracy for rejected ones. We apply our approach to classification with jumping emerging patterns (JEPs). Two adaptive versions of JEP-Classifier, by support adjustment and by border recomputation, are discussed. An adaptation condition is formulated after distance and ambiguity rejection strategies for probabilistic classifiers. The behavior of the method is tested against real-life datasets.


jumping emerging pattern adaptive classification classification with reject option transaction database local reduct rough set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, Y., Guan, C.: An extended em algorithm for joint feature extraction and classification in brain-computer interfaces. Neural Comput. 18(11), 2730–2761 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Zhang, Q., Landgrebe, J.D.: Design of an adaptive classification procedure for the analysis of highdimensional data with limited training samples. In: Monostori, L., Váncza, J., Ali, M. (eds.) IEA/AIE 2001. LNCS (LNAI), vol. 2070, p. 476. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Delany, S.J., Cunningham, P., Doyle, D., Zamolotskikh, A.: Generating estimates of classification confidence for a case-based spam filter. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 177–190. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Dong, G., Li, J.: Mining border descriptions of emerging patterns from dataset pairs. Knowl. Inf. Syst. 8(2), 178–202 (2005)CrossRefGoogle Scholar
  5. 5.
    Li, J., Dong, G., Ramamohanarao, K.: Making use of the most expressive jumping emerging patterns for classification. Knowl. Inf. Syst. 3(2), 1–29 (2001)Google Scholar
  6. 6.
    Terlecki, P., Walczak, K.: Jumping emerging pattern induction by means of graph coloring and local reducts in transaction databases. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 363–370. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Mascarilla, L., Frélicot, C.: Reject strategies driven combination of pattern classifiers. Pattern Analysis and Applications 5(2), 234–243 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dong, G., Zhang, X., Wong, L., Li, J.: Caep: Classification by aggregating emerging patterns. In: Int. Conf. on Disc. Sc., pp. 30–42 (1999)Google Scholar
  9. 9.
    Fan, H., Ramamohanarao, K.: Efficiently mining interesting emerging patterns. In: Dong, G., Tang, C.-j., Wang, W. (eds.) WAIM 2003. LNCS, vol. 2762, pp. 189–201. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Fumera, G., Pillai, I., Roli, F.: Classification with reject option in text categorisation systems. In: ICIAP, p. 582. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  11. 11.
    Chow, C.: On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory 16, 41–46 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pawel Terlecki
    • 1
  • Krzysztof Walczak
    • 1
  1. 1.Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations