Network as a Computer: Ranking Paths to Find Flows

  • Dusko Pavlovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5010)


We explore a simple mathematical model of network computation, based on Markov chains. Similar models apply to a broad range of computational phenomena, arising in networks of computers, as well as in genetic, and neural nets, in social networks, and so on. The main problem of interaction with such spontaneously evolving computational systems is that the data are not uniformly structured. An interesting approach is to try to extract the semantical content of the data from their distribution among the nodes. A concept is then identified by finding the community of nodes that share it. The task of data structuring is thus reduced to the task of finding the network communities, as groups of nodes that together perform some non-local data processing. Towards this goal, we extend the ranking methods from nodes to paths. This allows us to extract some information about the likely flow biases from the available static information about the network.


Markov Chain Mutual Information Path Network Attraction Bias Capacity Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berners-Lee, T.: Semantic Web road map (October 1998)Google Scholar
  2. 2.
    Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Trans. Inter. Tech. 5(1), 92–128 (2005)CrossRefGoogle Scholar
  3. 3.
    Boldi, P., Santini, M., Vigna, S.: PageRank as a function of the damping factor. In: WWW 2005: Proceedings of the 14th international conference on World Wide Web, pp. 557–566. ACM Press, New York, NY, USA (2005)CrossRefGoogle Scholar
  4. 4.
    Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience, New York, NY, USA (1991)zbMATHGoogle Scholar
  5. 5.
    Gierz, G., Hoffmann, K.H., Keimel, K., Lawson, J., Mislove, M., Scott, D.: Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  6. 6.
    Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, New York, NY, USA (2004)zbMATHGoogle Scholar
  7. 7.
    Golub, G.H., Greif, C.: An Arnoldi-type algorithm for computing PageRank. BIT Numerical Mathematics 43(1), 1–18 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating Web spam with TrustRank. In: VLDB, pp. 576–587 (2004)Google Scholar
  9. 9.
    Haveliwala, T.H.: Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)CrossRefGoogle Scholar
  10. 10.
    Hubbell, C.H.: An input-output approach to clique identification. Sociometry 28, 377–399 (1965)CrossRefGoogle Scholar
  11. 11.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)zbMATHCrossRefGoogle Scholar
  12. 12.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton, NJ, USA (2006)zbMATHGoogle Scholar
  14. 14.
    Mac Lane, S.: Categories for the Working Mathematician. Number 5 in Graduate Texts in Mathematics. Springer, Heidelberg (1971)zbMATHGoogle Scholar
  15. 15.
    Newman, M., Barabasi, A.-L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton Studies in Complexity. Princeton University Press, Princeton, NJ, USA (2006)zbMATHGoogle Scholar
  16. 16.
    Newman, M.E.J.: Modularity and community structure in networks. PNAS 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  17. 17.
    Ollivier, Y., Senellart, P.: Finding related pages using Green measures: An illustration with Wikipedia. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, Menlo Park, California, July 2007, pp. 1427–1433. AAAI Press (2007)Google Scholar
  18. 18.
    O’Reilly, T.: What is Web 2 (September 2005)Google Scholar
  19. 19.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the Web. Technical report, Stanford Digital Library Technologies Project (1998)Google Scholar
  20. 20.
    Pavlovic, D.: Network as a computer: ranking paths to find flows (February 2008), (Preliminary version of this paper, with proofs)
  21. 21.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dusko Pavlovic
    • 1
  1. 1.Oxford University and Kestrel Institute 

Personalised recommendations