Multilayer Neuro-fuzzy Network for Short Term Electric Load Forecasting

  • Yevgeniy Bodyanskiy
  • Sergiy Popov
  • Taras Rybalchenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5010)


The problem of short term electric load forecasting is considered in the case when a part of input variables is given in a nonnumeric form. Novel neuro-fuzzy network architecture and learning algorithms are proposed, which enable high-rate processing of information given in different measurements scales (quantitative, ordinal, and nominal). Types and parameters of the employed membership functions may be determined by the amount of available explicit prior knowledge. Experimental comparison to a traditional neural network confirms superiority of the proposed approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mori, H., Hidenori, K.: Optimal fuzzy inference for short-term load forecasting. IEEE Transactions on Power Systems 11(1), 390–396 (1996)CrossRefGoogle Scholar
  2. 2.
    Vermaak, J., Botha, E.C.: Recurrent neural networks for short-term load forecasting. IEEE Transactions on Power Systems 13(1), 126–132 (1998)CrossRefGoogle Scholar
  3. 3.
    Mueller, H., Petrisch, G.: Energy and load forecasting by fuzzy-neural networks. In: Proc. EUFTT 1998, September 7-10, pp. 1925–1929 (1998)Google Scholar
  4. 4.
    Shumilova, G.P., Gotman, N.E., Starceva, T.B.: Short term electric load forecasting using artificial neural networks. Elektrichestvo 10, 6–12 (1999) (in Russian)Google Scholar
  5. 5.
    Khan, M.R.: Short term load forecasting for large distribution systems using artificial neural networks and fuzzy logic. – PhD Thesis, UVEE, FEI, VUT Brno, Czech Republic (2001)Google Scholar
  6. 6.
    Khan, M.R., Zak, L., Ondrusek, C.: Fuzzy logic based short-term electric load forecasting. In: 4th International Scientific Conference Elektro-2001 – Faculty of Electrical Engineering, University of Zilina, Slovak Republic, pp. 19–24 (2001)Google Scholar
  7. 7.
    Tzafestas, S., Tzafestas, E.: Computational intelligence techniques for short-term electric load forecasting. Journal of Intelligent and Robotic Systems 31, 7–68 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Tkachenko, R.O., Pavlyuk, O.M.: Forecasting electric power consumption in Lviv region using artificial neural networks. Visnyk NU «Lvivska politechnika». Kompyuterna inzheneriya ta informaciyni technologii 450, 76–80 (2002) (in Ukrainian)Google Scholar
  9. 9.
    Ling, S.H., Leung, F.H.F., Lam, H.K., Tam, P.K.S.: Short-term electric load forecasting based on a neural fuzzy network. IEEE Transactions on Industrial Electronics 50(6), 1305–1316 (2003)CrossRefGoogle Scholar
  10. 10.
    Fan, S., Chen, L.: Short-term load forecasting based on an adaptive hybrid method. IEEE Transactions on Power Systems 21(1), 392–401 (2006)CrossRefGoogle Scholar
  11. 11.
    Bardachev Yu.N., Grinavcev, O.V., Litvinenko, V.I., Fefelov, A.A.: Synthesis and performance analysis of fuzzy neural networks using immune algorithms in the problems of electric load forecasting. Modelyuvannya ta keruvannya stanom ekologo-ekonomichnyh system regionu 3, 47–68 (2006)Google Scholar
  12. 12.
    Bodyanskiy Ye.V., Popov, S.V., Rybalchenko, T.V.: Adaptive short term electric load forecasting using artificial neural network. In: «Avtomatizaciya: problemy, idei, resheniya»: Proc. Int. Conf., Sebastopol, September 10-15, pp. 17–18 (2007) (in Russian)Google Scholar
  13. 13.
    Bodyanskiy Ye.V., Mikhalyov, O.I., Pliss, I.P.: Adaptive fault detection in controlled objects using artificial neural networks. – Dnipropetrovsk: Systemni technologii, p. 140 (in Ukrainian) (2000)Google Scholar
  14. 14.
    Kaczmarz, S.: Approximate solution of systems of linear equations. Int. J. Control 57(6), 1269–1271 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Cichocki, A., Unbehauen, R.: Neural Networks for Optimization and Signal Processing, Stuttgart, Teubner, p. 526 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yevgeniy Bodyanskiy
    • 1
  • Sergiy Popov
    • 1
  • Taras Rybalchenko
    • 1
  1. 1.Control Systems Research LaboratoryKharkiv National University of Radio Electronics 

Personalised recommendations