Two Sources Are Better Than One for Increasing the Kolmogorov Complexity of Infinite Sequences

  • Marius Zimand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5010)


The randomness rate of an infinite binary sequence is characterized by the sequence of ratios between the Kolmogorov complexity and the length of the initial segments of the sequence. It is known that there is no uniform effective procedure that transforms one input sequence into another sequence with higher randomness rate. By contrast, we display such a uniform effective procedure having as input two independent sequences with positive but arbitrarily small constant randomness rate. Moreover the transformation is a truth-table reduction and the output has randomness rate arbitrarily close to 1.


Kolmogorov complexity Hausdorff dimension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BDS07]
    Bienvenu, L., Doty, D., Stephan, F.: Constructive dimension and weak truth-table degrees. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, Springer, Heidelberg (to appear, 2007); Available as Technical Report arXiv:cs/0701089 ar arxiv.orgCrossRefGoogle Scholar
  2. [BFNV05]
    Buhrman, H., Fortnow, L., Newman, I., Vereshchagin, N.: Increasing Kolmogorov complexity. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 412–421. Springer, Heidelberg (2005)Google Scholar
  3. [BIW04]
    Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using few independent sources. In: Proceedings of the 36th ACM Symposium on Theory of Computing, pp. 384–393 (2004)Google Scholar
  4. [CZ08]
    Calude, C., Zimand, M.: Algorithmically independent sequences, CORR Technical report arxiv:0802-0487 (2008)Google Scholar
  5. [Dot07]
    Doty, D.: Dimension extractors and optimal decompression. Technical Report arXiv:cs/0606078, Computing Research Repository,, Theory of Computing Systems (to appear, May 2007)Google Scholar
  6. [FHP+06]
    Fortnow, L., Hitchcock, J., Pavan, A., Vinodchandran, N.V., Wang, F.: Extracting Kolmogorov complexity with applications to dimension zero-one laws. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 335–345. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. [Lut03]
    Lutz, J.: The dimensions of individual strings and sequences. Information and Control 187, 49–79 (2003)zbMATHMathSciNetGoogle Scholar
  8. [May02]
    Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Information Processing Letters 84, 1–3 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [MN06]
    Miller, J., Nies, A.: Randomness and computability. Open questions. Bull. Symb. Logic 12(3), 390–410 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [NR06]
    Nies, A., Reimann, J.: A lower cone in the wtt degrees of non-integral effective dimension. In: Proceedings of IMS workshop on Computational Prospects of Infinity, Singapore (to appear, 2006)Google Scholar
  11. [Rei04]
    Reimann, J.: Computability and fractal dimension. Technical report, Universität Heidelberg, Ph.D. thesis (2004)Google Scholar
  12. [Rya84]
    Ryabko, B.: Coding of combinatorial sources and Hausdorff dimension. Doklady Akademii Nauk SSR 277, 1066–1070 (1984)MathSciNetGoogle Scholar
  13. [She00]
    Shen, A.: Algorithmic information theory and Kolmogorov complexity. Technical Report 2000-034, Uppsala Universitet (December 2000)Google Scholar
  14. [Sta05]
    Staiger, L.: Constructive dimension equals Kolmogorov complexity. Information Processing Letters 93, 149–153 (2005); Preliminary version: Research Report CDMTCS-210, Univ. of Auckland (January 2003) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marius Zimand
    • 1
  1. 1.Department of Computer and Information SciencesTowson UniversityBaltimoreUSA

Personalised recommendations