Skip to main content

Comparing Universal Covers in Polynomial Time

  • Conference paper
Book cover Computer Science – Theory and Applications (CSR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5010))

Included in the following conference series:

Abstract

The universal cover T G of a connected graph G is the unique (possible infinite) tree covering G, i.e., that allows a locally bijective homomorphism from T G to G. Universal covers have major applications in the area of distributed computing. It is well-known that if a graph G covers a graph H then their universal covers are isomorphic, and that the latter can be tested in polynomial time by checking if G and H share the same degree refinement matrix. We extend this result to locally injective and locally surjective homomorphisms by following a very different approach. Using linear programming techniques we design two polynomial time algorithms that check if there exists a locally injective or a locally surjective homomorphism, respectively, from a universal cover T G to a universal cover T H . This way we obtain two heuristics for testing the corresponding locally constrained graph homomorphisms. As a consequence, we have obtained a new polynomial time algorithm for testing (subgraph) isomorphism between universal covers, and for checking if there exists a role assignment (locally surjective homomorphism) from a given tree to an arbitrary fixed graph H.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abello, J., Fellows, M.R., Stillwell, J.C.: On the complexity and combinatorics of covering finite complexes. Australian Journal of Combinatorics 4, 103–112 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th ACM Symposium on Theory of Computing, pp. 82–93 (1980)

    Google Scholar 

  3. Biggs, N.: Constructing 5-arc transitive cubic graphs. Journal of London Mathematical Society II 26, 193–200 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L.: The classification of coverings of processor networks. Journal of Parallel Distributed Computing 6, 166–182 (1989)

    Article  Google Scholar 

  5. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan, London, Elsevier, New York (1976)

    Google Scholar 

  6. Chalopin, J., Métivier, Y., Zielonka, W.: Local computations in graphs: the case of cellular edge local computations. Fund. Inform. 74, 85–114 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Dantchev, S., Martin, B.D., Stewart, I.A.: On non-definability of unsatisfiability (manuscript)

    Google Scholar 

  8. Everett, M.G., Borgatti, S.: Role coloring a graph. Mathematical Social Sciences 21, 183–188 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fiala, J., Heggernes, P., Kristiansen, P., Telle, J.A.: Generalized H-coloring and H-covering of trees. Nordic Journal of Computing 10, 206–224 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Fiala, J., Kratochvíl, J.: Complexity of partial covers of graphs. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 537–549. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Fiala, J., Kratochvíl, J.: Partial covers of graphs. Discussiones Mathematicae Graph Theory 22, 89–99 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Fiala, J., Kratochvíl, J., Kloks, T.: Fixed-parameter complexity of λ-labelings. Discrete Applied Mathematics 113, 59–72 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment problem. Theoretical Computer Science 349, 67–81 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fiala, J., Paulusma, D., Telle, J.A.: Locally constrained graph homomorphisms and equitable partitions. European Journal of Combinatorics (to appear)

    Google Scholar 

  15. Godsil, C.: Algebraic Combinatorics. Chapman and Hall, Boca Raton (1993)

    MATH  Google Scholar 

  16. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  17. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. Annals of Mathematics Studies 38, 223–246 (1956)

    MathSciNet  MATH  Google Scholar 

  18. Kranakis, E., Krizanc, D., Van den Berg, J.: Computing boolean functions on anonymous networks. Information and Computation 114, 214–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. Journal of Combinatorial Theory B 71, 1–16 (1997)

    Article  MATH  Google Scholar 

  20. Kristiansen, P., Telle, J.A.: Generalized H-coloring of graphs. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 456–466. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Leighton, F.T.: Finite common coverings of graphs. Journal of Combinatorial Theory B 33, 231–238 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Massey, W.S.: Algebraic Topology: An Introduction. Harcourt (1967)

    Google Scholar 

  23. Moore, E.F.: Gedanken-experiments on sequential machines. Annals of Mathematics Studies 34, 129–153 (1956)

    Google Scholar 

  24. Nešetřil, J.: Homomorphisms of derivative graphs. Discrete Math. 1, 257–268 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. Norris, N.: Universal covers of graphs: isomorphism to depth n − 1 implies isomorphism to all depths. Discrete Applied Mathematics 56, 61–74 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Roberts, F.S., Sheng, L.: How hard is it to determine if a graph has a 2-role assignment? Networks 37, 67–73 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I - Characterizing the solvable cases. IEEE Transactions on Parallel and Distributed Systems 7, 69–89 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward A. Hirsch Alexander A. Razborov Alexei Semenov Anatol Slissenko

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiala, J., Paulusma, D. (2008). Comparing Universal Covers in Polynomial Time. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds) Computer Science – Theory and Applications. CSR 2008. Lecture Notes in Computer Science, vol 5010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79709-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79709-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79708-1

  • Online ISBN: 978-3-540-79709-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics