Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 116))

  • 587 Accesses

With the advent of modern experimental techniques of fabricating nanomate-rials, it is possible to grow semiconductor superlattices (SLs) composed of alternative layers of two different degenerate layers with controlled thickness [1]. These structures have found wide applications in many new devices such as photodiodes [2], photoresistors [3], transistors [4], light emitters [5], tunneling devices [6], etc. [7–18]. The investigations of the physical properties of narrow gap SLs have increased extensively, as they are important for optoelectronic devices and also because the quality of heterostuctures involving narrow gap materials has been greatly improved. It may be noted that the nipi structures, also called the doping superlattices, are crystals with a periodic sequence of ultra-thin film layers [19, 20] of the same semiconductor with the intrinsic layer in between together with the opposite sign of doping. All the donors will be positively charged and all the acceptors negatively charged. This periodic space charge causes a periodic space charge potential which quantizes the motions of the carriers in the z-direction together with the formation of the subband energies. The electronic structures of the nipis differ radically from the corresponding bulk semiconductors as stated below:

  1. (a)

    Each band is split into mini-bands

  2. (b)

    The magnitude and the spacing of these mini-bands may be designed by the choice of the superlattices parameters and

  3. (c)

    The electron energy spectrum of the nipi crystal becomes two-dimensional leading to the step functional dependence of the density-of-states function.

In Sect. 8.2.1, of the theoretical background, the Einstein relation in nipi structures of tetragonal materials has been investigated. Section 8.2.2 contains the results for nipi structures of III—V, ternary and quaternary compounds, in accordance with the three and the two band models of Kane together with parabolic energy bands and they form the special cases of Sect. 8.2.1. Sections 8.2.3–8.2.5 contain the study of the DMR for nipis of II–VI, IV–VI, and stressed Kane type semiconductors, respectively. Section 8.3 contains the result and discussions of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.G. Anderson, W.D. Laidig, R.M. Kolbas, Y.C. Lo, J. Appl. Phys. 60, 2361 (1986)

    Article  ADS  Google Scholar 

  2. F. Capasso, Semiconduct. Semimetals 22, 2 (1985)

    MathSciNet  Google Scholar 

  3. F. Capasso, K. Mohammed, A.Y. Cho, R. Hull, A.L. Hutchinson, Appl. Phys. Lett. 47, 420 (1985)

    Article  ADS  Google Scholar 

  4. F. Capasso, R.A. Kiehl, J. Appl. Phys. 58, 1366 (1985)

    Article  ADS  Google Scholar 

  5. K. Ploog, G.H. Doheler, Adv. Phys. 32, 285 (1983)

    Article  ADS  Google Scholar 

  6. F. Capasso, K. Mohammed, A.Y. Cho, Appl. Phys. Lett. 478 (1986)

    Google Scholar 

  7. R. Grill, C. Metzner, G.H. Döhler, Phys. Rev. B 63, 235316 (2001); J. Z. Wang, Z.G. Wang, Z.M. Wang, S.L. Feng, Z. Yang, Phys. Rev. B 62, 6956 (2000); J. Z. Wang, Z.G. Wang, Z.M. Wang, S.L. Feng, Z. Yang, Phys. Rev. B 61, 15614 (2000)

    Article  ADS  Google Scholar 

  8. A.R. Kost, M.H. Jupina, T.C. Hasenberg, E.M. Garmire, J. Appl. Phys. 99, 023501 (2006)

    Article  ADS  Google Scholar 

  9. A.G. Smirnov, D.V. Ushakov, V.K. Kononenko, Proc. SPIE 4706, 70 (2002)

    Article  ADS  Google Scholar 

  10. D.V. Ushakov, V.K. Kononenko, I.S. Manak, Proc. SPIE 4358, 171 (2001)

    Article  ADS  Google Scholar 

  11. J.Z. Wang, Z.G. Wang, Z.M. Wang, S.L. Feng, Z. Yang, Phys. Rev. B 62, 6956 (2000).

    Article  ADS  Google Scholar 

  12. A.R. Kost, L. West, T.C. Hasenberg, J.O. White, M. Matloubian, G.C. Valley, Appl. Phys. Lett. 63, 3494 (1993)

    Article  ADS  Google Scholar 

  13. S. Bastola, S.J. Chua, S.J. Xu, J. Appl. Phy. 83, 1476 (1998)

    Article  ADS  Google Scholar 

  14. Z.J. Yang, E.M. Garmire, D. Doctor, J. Appl. Phys. 82, 3874 (1997)

    Article  ADS  Google Scholar 

  15. G.H. Avetisyan, V.B. Kulikov, I.D. Zalevsky, P.V. Bulaev, Proc. SPIE 2694, 216 (1996)

    Article  ADS  Google Scholar 

  16. U. Pfeiffer, M. Kneissl, B. Knüpfer, N. Müller, P. Kiesel, G.H. Döhler, J.S. Smith, Appl. Phys. Lett. 68, 1838 (1996)

    Article  ADS  Google Scholar 

  17. H.L. Vaghjiani, E.A. Johnson, M.J. Kane, R. Grey, C.C. Phillips, J. Appl. Phys. 76, 4407 (1994)

    Article  ADS  Google Scholar 

  18. P. Kiesel, K.H. Gulden, A. Hoefler, M. Kneissl, B. Knuepfer, S.U. Dankowski, P. Riel, X.X. Wu, J.S. Smith, G.H. Doehler, Proc. SPIE 1985, 278 (1993)

    Article  ADS  Google Scholar 

  19. G.H. Doheler, Phys. Script. 24 430 (1981)

    Article  ADS  Google Scholar 

  20. S. Mukherjee, S.N. Mitra, P.K. Bose, A.R. Ghatak, A. Neoigi, J.P. Banerjee, A. Sinha, M. Pal, S. Bhattacharya, K.P. Ghatak, J. Comput. Theor. Nanosci. 4, 550 (2007)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). The Einstein Relation in Nipi Structures of Compound Semiconductors. In: Einstein Relation in Compound Semiconductors and their Nanostructures. Springer Series in Materials Science, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79557-5_8

Download citation

Publish with us

Policies and ethics