Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 116))

It is well known that the Einstein relation for the diffusivity-mobility ratio (DMR) of the carriers in semiconductors occupies a central position in the whole field of semiconductor science and technology [1] since the diffusion constant (a quantity very useful for device analysis where exact experimental determination is rather difficult) can be obtained from this ratio by knowing the experimental values of the mobility. The classical value of the DMR is equal to (kBT ǀ ǀeǀ) , (kB, T, and ǀeǀ are Boltzmann's constant, temperature and the magnitude of the carrier charge, respectively). This relation in this form was first introduced to study the diffusion of gas particles and is known as the Einstein relation [2,3]. Therefore, it appears that the DMR increases linearly with increasing T and is independent of electron concentration. This relation holds for both types of charge carriers only under non-degenerate carrier concentration although its validity has been suggested erroneously for degenerate materials [4]. Landsberg first pointed out that the DMR for semiconductors having degenerate electron concentration are essentially determined by their energy band structures [5, 6]. This relation is useful for semiconductor homostructures [7, 8], semiconductor—semiconductor heterostructures [9, 10], metals—semiconductor heterostructures [11–19] and insulator-semiconductor heterostructures [20–23]. The nature of the variations of the DMR under different physical conditions has been studied in the literature [1–3, 5, 6, 24–50] and some of the significant features, which have emerged from these studies, are:

  1. (a)

    The ratio increases monotonically with increasing electron concentration in bulk materials and the nature of these variations are significantly in- fluenced by the energy band structures of different materials;

  2. (b)

    The ratio increases with the increasing quantizing electric field as in inversion layers;

  3. (c)

    The ratio oscillates with the inverse quantizing magnetic field under magnetic quantization due to the Shubnikov de Hass effect;

  4. (d)

    The ratio shows composite oscillations with the various controlled quantities of semiconductor superlattices.

  5. (e)

    In ultrathin films, quantum wires and field assisted systems, the value of the DMR changes appreciably with the external variables depending on the nature of quantum confinements of different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kroemer, IEEE Trans. Electron Devices25, 850 (1978)

    Article  ADS  Google Scholar 

  2. A. Einstein, Ann. der Physik17, 549 (1905); W. Nernst, Z. Phys. Chem. Leipzig2, 613 (1888); J.S. Townsend, Trans. R. Soc.193A, 129 (1900)

    Article  ADS  Google Scholar 

  3. C. Wagner, Z. Physik. Chem.B21, 24 (1933); C. Herring, M.H. Nichols, Rev. Mod. Phys. 21, 185 (1949); P.T. LandsbergThermodynamics and Statistical Mechanics. (Oxford University Press, Oxford, 1978);In Recombination in Semiconductors. (Cambridge University Press, UK, 1991)

    Google Scholar 

  4. R.W. Lade, Proc. IEEE52, 743 (1965)

    Article  Google Scholar 

  5. P.T. Landsberg, Proc. R. Soc.A 213, 226 (1952); Proc. Phys. Soc.A 62, 806 (1949)

    ADS  Google Scholar 

  6. P.T. Landsberg, Eur. J. Phys2, 213 (1981)

    Article  MathSciNet  Google Scholar 

  7. C.H. Wang, A. Neugroschel, IEEE Electron. Dev. Lett.ED-11, 576 (1990)

    Article  ADS  Google Scholar 

  8. I.-Y. Leu, A. Neugroschel, IEEE Trans. Electron. Dev.ED-40, 1872 (1993)

    Article  ADS  Google Scholar 

  9. F. Stengel, S.N. Mohammad, H. Morkoç, J. Appl. Phys.80, 3031 (1996)

    Article  ADS  Google Scholar 

  10. H.-J. Pan, W.-C. Wang, K.-B. Thai, C.-C. Cheng, K.-H. Yu, K.-W. Lin,C.-Z. Wu, W.-C. Liu, Semiconduct. Sci. Technol.15, 1101 (2000)

    Article  ADS  Google Scholar 

  11. S.N. Mohammad, J. Appl. Phys.95, 4856 (2004)

    Article  ADS  Google Scholar 

  12. V.K. Arora, Appl. Phys. Lett.80, 3763 (2002)

    Article  ADS  Google Scholar 

  13. S.N. Mohammad, J. Appl. Phys.95, 7940 (2004)

    Article  ADS  Google Scholar 

  14. S.N. Mohammad, Philos. Mag.84, 2559 (2004)

    Article  ADS  Google Scholar 

  15. S.N. Mohammad, J. Appl. Phys.97, 063703 (2005)

    Article  ADS  Google Scholar 

  16. K. Suzue, S.N. Mohammad, Z.F. Fan, W. Kim, O. Aktas, A.E. Botchkarev, H. Morkoç, J. Appl. Phys.80, 4467 (1996)

    Article  ADS  Google Scholar 

  17. S.N. Mohammad, Z.F. Fan, W. Kim, O. Aktas, A.E. Botchkarev, A. Salvador, H. Morkoç, Electron. Lett.32, 598 (1996)

    Article  Google Scholar 

  18. Z. Fan, S.N. Mohammad, W. Kim, O. Aktas, A.E. Botchkarev, K. Suzue, H. Morkoç, J. Electron. Mater.25, 1703 (1996)

    Article  ADS  Google Scholar 

  19. C. Lu, H. Chen, X. Lv, X. Xia, S.N. Mohammad, J. Appl. Phys. 91, 9216 (2002)

    ADS  Google Scholar 

  20. S.G. Dmitriev, Yu.V. Markin, Semiconductors34, 931 (2000)

    Article  ADS  Google Scholar 

  21. M. Tao, D. Park, S.N. Mohammad, D. Li, A.E. Botchkerav, H. Morkoç, Philos. Mag. B73, 723 (1996)

    Google Scholar 

  22. D.G. Park, M. Tao, D. Li, A.E. Botchkarev, Z. Fan, S.N. Mohammad, H. Morkoç, J. Vac. Sci. Technol. B14, 2674 (1996)

    Article  Google Scholar 

  23. Z. Chen, D.G. Park, S.N. Mohammad, H. Morkoç, Appl. Phys. Lett.69, 230 (1996)

    Article  ADS  Google Scholar 

  24. P.T. Landsberg, J. Appl. Phys.56, 1696 (1984); P.T. Landsberg, A.G. Guy, Phys. Rev. B28, 1187 (1983); P.T. Landsberg, Phys. Rev. B 33, 8321 (1986); S.A. Hope, G. Feat, P.T. Landsberg, J. Appl. Phys.61, 4909 (1987); Y. Roichman, N. Tessler, Appl. Phys. Lett.80, 1948 (2002); J.M.H. Peters, Eur. J. Phys.3, 19 (1982); H. Van Cong, S. Brunet, S. Charar, Phys. Stat. Solidi B109, K1 (1982); H. Van Cong, Phys. Stat. Solidi A56, 395 (1979); H. Van Cong, Solid State Electron.24, 495 (1981)

    Article  ADS  Google Scholar 

  25. S.N. Mohammad, S.T.H. Abidi, J. Appl. Phys.61, 4909 (1987); S.N. Mohammad, S.T.H. Abidi, Solid State Electron.27, 1153 (1985); S.N. Mohammad, S.T.H. Abidi, J. Appl. Phys.56, 3341 (1984); M.A. Sobhan, S.N. Mohammad, J. Appl. Phys.58, 2634 (1985); S.N. Mohammad, A.V. Bemis, IEEE Trans. Electron. Dev.ED-39, 282 (1992); S.N. Mohammad, R.L. Carter, Philos. Mag. B72, 13 (1995); S.N. Mohammad, Solid State Electron.46, 203 (2002); S.N. Mohammad, J. Chen, J.-I. Chyi, H. Morkoç, Appl. Phys. Lett.56,, 937 (1990)

    Article  ADS  Google Scholar 

  26. P.T. Landsberg, S.A. Hope, Solid State Electron.20, 421 (1977); S.A. Hope, G. Feat, P.T. Landsberg, J. Phys. A. Math. Gen.14, 2377 (1981)

    Article  ADS  Google Scholar 

  27. W. Elsäber, E.O. Göbel, Electron. Lett.19, 335 (1983); R. Hilfer, A. Blumen, Phys. Rev. A37, 578 (1988); T.G. Castner, Phys. Rev. B55, 4003 (1997); E. Barkai, V.N. Fleurov, Phys. Rev. E.58, 1296 (1998); Y.Y. Roichman, N. Tessler, Appl. Phys. Lett.80, 1948 (2002); T.H. Nguyen, S.K. O'Leary, Appl. Phys. Lett.83, 1998 (2003); T.H. Nguyen, S.K. O'Leary, J. Appl. Phys.98, 076102 (2005); C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, J. Appl. Phys.99,073701 (2006)

    Article  ADS  Google Scholar 

  28. R.K. Jain, Phys. Stat. Sol. (a)42, K221 (1977); B.A. Aronzon, E.Z. Meilikhov, Phys. Stat. Sol. (a)19, 313 (1973)

    Article  Google Scholar 

  29. A.N. Chakravarti, B.R. Nag, Int. J. Electron.37, 281 (1974); P.N. Butcher, A.N. Chakravarti, S. Swaminathan, Phys. Stat. Sol. (a)25, K47 (1974)

    Article  Google Scholar 

  30. B.R. Nag, A.N. Chakravarti, Solid State Electron.18, 109 (1975); B.R. Nag, A.N. Chakravarti, Phys. Stat. Sol. (a)22, K153 (1974)

    Article  ADS  Google Scholar 

  31. B.R. Nag, A.N. Chakravarti, P.K. Basu, Phys. Stat. Sol. (a)68, K75 (1981)

    Article  ADS  Google Scholar 

  32. B.R. Nag, A.N. Chakravarti, Phys. Stat Sol. (a)67, K113 (1981)

    Article  ADS  Google Scholar 

  33. A.N. Chakravarti, D.P. Parui, Phys. Lett.40A, 113 (1972); A.N. Chakravarti, D.P. Parui, Phys. Lett.43A, 60 (1973); A.N. Chakravarti, D.P. Parui, Phys. Stat. Sol. (a)14, K23 (1972); A.N. Chakravarti, D.P. Parui, Phys. Stat. Sol. (a)14, K55 (1972); A.N. Chakravarti, D.P. Parui, Canad. J. Phys.51, 451 (1973); D. Mukherjee, A.N. Chakravarti, B.R. Nag, Phys. Stat. Sol (a)26, K27 (1974); S. Ghosh, A.N. Chakravarti, Phys. Stat. Sol. (b)147, 355 (1988)

    ADS  Google Scholar 

  34. S. Choudhury, D. De, S. Mukherjee, A. Neogi, A. Sinha, M. Pal, S. K. Biswas, S. Pahari, S. Bhattacharya, K.P. Ghatak, J. Comp. Theo. Nanosci.5, 375 (2008); S. Mukherjee, S.N. Mitra, P.K. Bose, A.R. Ghatak, A. Neogi, J.P. Banerjee, A. Sinha, M. Pal, S. Bhattacharya, K.P. Ghatak, J. Comp. Theo. Nanosci.4, 550 (2007); A. Khan, A. Das, Appl. Phys. A89, 695 (2007)

    Google Scholar 

  35. J.P. Bouchaud, A. Georges, Phys. Rep.195, 127 (1996); V. Blickle, T. Speck, C. Lutz, U. Seifert, C. Bechinger, Phys. Rev. Lett. 98, 210601 (2007); Y. Kang, E. Jean, C.M. Fortmonn, Appl. Phys. Lett.88, 112110 (2006); F. Neumann, Y.A. Genenko, H.V. Seggern, J. Appl. Phys.99, 013704 (2006); J. van de Lagemaat, Phys. Rev. B.73, 235319 (2005); Q. Gu, E.A. Schiff, S. Grneber, F. Wang, R. Schwarz, Phys. Rev. Lett.76, 3196 (1996); M.Y. Azbel, Phys. Rev. B.46, 15004 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  36. A.H. Marshak, Solid State Electron.30, 1089 (1987); A.H. Marshak, C.M.V. Vliet, Proc. IEEE72, 148 (1984); C.M.V. Vliet, A. van der Zeil, Solid State Electron.20, 931 (1977)

    Article  ADS  Google Scholar 

  37. A.N. Chakravarti, K.P. Ghatak, A. Dhar, K.K. Ghosh, S. Ghosh, Appl. Phys.A26, 169 (1981)

    ADS  Google Scholar 

  38. B.R. NagElectron Transport in Compound Semiconductors. (Springer-Verlag, Germany, 1980); O. MadelungSemiconductors: Data Handbook, 3rd edn.(Springer, Berlin, 2004); M. Krieehbaum, P. Kocevar, H. Pascher, G. BauerIEEE QE 24, 1727 (1988)

    Google Scholar 

  39. K.P. Ghatak, S.N. Biswas, Nanostruct. Mater.2, 91 (1993); K.P. Ghatak, S.N. Biswas, J. Appl. Phys.70, 4309 (1991); K.P. Ghatak, B. Mitra, M. Mondal, Ann. der Physik48, 283 (1991); B. Mitra, K.P. Ghatak, Physica Scripta42, 103 (1990); B. Mitra, K.P. Ghatak, in Phys. Lett.135A, 397 (1989); M. Mondal, K.P. Ghatak, Ann. der Physik46, 502 (1989); K.P. Ghatak, N. Chattopadhyay, M. Mondal, J. Appl. Phys.63, 4536 (1988); J. Low Temp. Phys.73, 321 (1988)

    Article  Google Scholar 

  40. K.P. Ghatak, A. Ghoshal, S.N. Biswas, Nouvo Cimento15D, 39 (1993)

    Article  ADS  Google Scholar 

  41. K.P. Ghatak, D. Bhattacharyya, Phys. Lett.A 184, 366 (1994)

    ADS  Google Scholar 

  42. K.P. Ghatak, D. Bhattacharyya, Physica Scripta52, 343 (1995); M. Mondal, K.P. Ghatak, J. Mag. Mag. Mater.62, 115 (1986)

    Article  ADS  Google Scholar 

  43. K.P. Ghatak, B. Nag, D. Bhattacharyya, J. Low Temp. Phys.14, 1 (1995)

    Article  Google Scholar 

  44. K.P. Ghatak, M. Mondal, Thin Solid Films148, 219 (1987)

    Article  ADS  Google Scholar 

  45. K.P. Ghatak, A.K. Choudhury, S. Ghosh, A.N. Chakravarti, Appl. Phys.23, 241 (1980)

    Article  ADS  Google Scholar 

  46. K.P. Ghatak, Influence of band structure on some quantum processes in tetragonal semiconductors, D. Eng. Thesis, Jadavpur University, Kolkata, India, 1991

    Google Scholar 

  47. K.P. Ghatak, N. Chattopadhyay, M. Mondal, Appl. Phys. A44, 305 (1987)

    Article  ADS  Google Scholar 

  48. S.N. Biswas, K.P. Ghatak, inProceedings of the Society of Photo-optical and Instrumentation Engineers (SPIE), Quantum Well and Superlattice Physics, USA, 1987, vol. 792, p. 239; K.P. Ghatak, M. Mondal, S. Bhattacharyya, SPIE, USA, 1990, vol. 1284, p. 113; K.P. Ghatak, S. Bhattacharyya, M. Mondal, SPIE, USA, 1990, vol. 1307, p. 588; K.P. Ghatak, B. De, Defect engineering in semiconductor growth, processing and device technology materials research society proceedings (MRS) Spring meeting, 1992, vol. 262, p. 911; K.P. Ghatak, B. De, The Proceedings of Wide Band Gap Semiconductors Symposium, MRS, 1992, p. 377; S. Bhattacharya, K.P. Ghatak, S.N. Biswas, SPIE, 836, Optoelectronic materials, Devices, Packaging Interconnects, 1988, pp. 72–87

    Google Scholar 

  49. M. Mondal, K.P. Ghatak, J. Phys. C (Sol. State.)20, 1671 (1987); M. Mondal, S.N. Banik, K.P. Ghatak, Canad. J. Phys.67, 72 (1989)

    Article  ADS  Google Scholar 

  50. K.P. Ghatak, M. Mondal, J. Appl. Phys.70, 1277 (1992)

    Article  ADS  Google Scholar 

  51. W. Zawadzki, Adv. Phys.23, 435 (1974); B.M. Askerov, N.F. Gashimzade, M.M. Panakhov, Sov. Phys. Solid State29, 465 (1987); S.P. Zelenin, A.S. Kondratev, A.I. Kuchma, Sov. Phys. Semicond.16, 355 (1982); A.V. Germaneko, G.M. Minkov, Phys. Stat. Sol. (b)184, 9 (1994); W. Zawadzki, inTwo-Dimensional Systems, Hetrostructures and Superlattices, vol. 53, ed. by G. Bower, F. Kuches, H. Haiunich, Springer Ser. Solid-State Sci. (Springer, Berlin, 1984), p. 79; B. Mitra, K.P. Ghatak, Phys. Lett.141, 81 (1989); L.J. Singh, S. Choudhury, D. Baruah, S.K. Biswas, S. Pahari, K.P. Ghatak, Physica B368, 188 (2005); K.P. Ghatak, B. De, B. Nag, P.K. Chakraborty, Nonlin. Opt. Quant. Opt.16, 212 (1996); K.P. Ghatak, M. Mitra, B. Goswami, B. Nag, Nonlin. Opt.16, 167 (1996); K.P. Ghatak, B. Nag, Nanostruct. Mater. 2, 14 (1995); K.P. Ghatak, B. Mitra, Nouvo Cimento15D, 97 (1993)

    Article  ADS  Google Scholar 

  52. S.K. Biswas, A.R. Ghatak, A. Neogi, A. Sharma, S. Bhattacharya, K.P. Ghatak, Physica E36, 163 (2007); K.P. Ghatak, S. Bhattacharya, S. Bhowmik, R. Benedictus, S. Choudhury, J. Appl. Phys.103, 1 (2008); M. Mondal, A. Ghoshal, K.P. Ghatak, Nouvo Cimento D14D, 63 (1992); K.P. Ghatak, Nouvo Cimento D13D, 1321 (1992); K.P. Ghatak, M. Mondal, J. Appl. Phys.70, 299 (1991); K.P. Ghatak, S.N. Biswas, J. Low Temp. Phys.78, 219 (1990); K.P. Ghatak, M. Mondal, J. Appl. Phys.65, 3480 (1989); J. Appl. Phys.66, 3056 (1989)

    Article  ADS  Google Scholar 

  53. K.P. Ghatak, B. De, M. Modal, S.N. Biswas, Epitaxial Hetrostructures, MRS Symposium Proceedings Spring Meeting198, 327 (1990); K.P. Ghatak, S.N. Biswas, Long Wave Length Semiconductor Devices, Materials and Processes MRS Symposium Proceedings, MRS Spring Meeting 216, 465 (1990); K.P. Ghatak, B. De, Modern Perspective on Thermoelectrics and Related Materials, MRS Symposium Proceedings, Spring Meeting234, 55 (1991); K.P. Ghatak, B. De, Modern Perspective on Thermoelectrics and Related Materials, MRS Symposium Proceedings, Spring Meeting234, 59 (1991); K.P. Ghatak, Proceedings of SPIE, USA, Fiber Optic and Laser Sensors IX1584, 435 (1992)

    Google Scholar 

  54. R.B. Dingle, Phil Mag46, 813 (1955); D. Redfield, M.A. Afromowitz, Phil. Mag.18,, 831 (1969); H.C. Cassey, F. Stern, J. Appl. Phys. 47, 631 (1976); M. Mondal, K.P. Ghatak, Physics Lett.102A, 54 (1984); P.K. Chakraborty, G.C. Datta, K.P. Ghatak, Physica Scripta68, 368 (2003); B. Mitra, D.K. Basu, B. Nag, K.P. Ghatak, Nonlinear Opt.17, 171 (1997); K.P. Ghatak, S. Bhattacharya, J. Appl. Phys.102, 073704 (2007)

    Google Scholar 

  55. K.P. Ghatak, S. Bhattacharya, H. Saikia, D. Baruah, A. Saikia, K.M. Singh, A. Ali, S.N. Mitra, P.K. Bose, A. Sinha, J. Comput. Theor. Nanosci.3, 727 (2006)

    Google Scholar 

  56. E.O. Kane, Solid State Electron. 8, 3 (1985); T. Ando, A.H. Fowler, F. Stern, Rev. Modern Phys.54, 437 (1982); P.K. BasuOptical Processes in Semiconductors. (Oxford University Press, 2001); A.N. Chakravarti, D. Mukherjee, Phys. Lett.53A, 403 (1975); A.N. Chakravarti, S. Swaminathan, Phys. Stat. Sol. (a)23, K191 (1974); A.N. Chakravarti, Phys. Stat. Sol. (a)25, K 105 (1974)

    Article  ADS  Google Scholar 

  57. A.K. Sreedhar, S.C. Gupta, Phys. Rev. B5, 3160 (1972); R.W. Keyes, IBM. J. Res. Develop.5, 266 (1961); R.W. Keyes, Solid State Phys.20, 37 (1967)

    Article  ADS  Google Scholar 

  58. S. Bhattacharya, S. Chowdhury, K.P. Ghatak, J. Comput. Theor. Nanosci.3, 423 (2006); S. Choudhury, L.J. Singh, K.P. Ghatak, Physica B365, 5 (2005); L.J. Singh, S. Choudhary, A. Mallik, K.P. Ghatak, J. Comput. Theor. Nanosci. 2, 287 (2005); K. P. Ghatak, J.Y. Siddiqui, B. Nag, Phys. Lett. A282, 428 document (2001); K.P. Ghatak, J.P. Banerjee, B. Nag, J. Appl. Phys.83, 1420 (1998); B. Nag, K.P. Ghatak, Nonlin. Opt.19, 1 (1998); K.P. Ghatak, B. Nag, Nanostruct. Mater.10, 923 (1998); B. Nag, K.P. Ghatak, J. Phys. Chem. Sol. 58, 427 (1997)

    Google Scholar 

  59. K.P. Ghatak, D.K. Basu, B. Nag, J. Phys. Chem. Sol.58, 133 (1997); K.P. Ghatak, J.P. Banerjee, B. Goswami, B. Nag, Nonlin. Opt. Quant. Opt.16, 241 (1996); K.P. Ghatak, J.P. Banerjee, D. Bhattacharyya, B. Nag, Nanotechnology7, 110 (1996); K. P. Ghatak, J.P. Banerjee, M. Mitra, B. Nag, Nonlin. Opt.17, 193 (1996); B. Nag, K. P. Ghatak, Phys. Scr. 54, 657 (1996); K.P. Ghatak, B. Mitra, Phys. Scr.46, 182 (1992); K.P. Ghatak, Int. J. Electron.71, 239 (1991)

    Article  ADS  Google Scholar 

  60. K.P. Ghatak, B. De, S.N. Biswas, M. Mondal, Mechanical Behavior of Materials and Structures in Microelectronics, MRS Symposium Proceedings, Spring Meeting2216,191 (1991); K.P. Ghatak, B. De, MRS Symposium Proceedings226, 191 (1991); K.P. Ghatak, B. Nag, G. Majumdar, Proceedings of MRS379, 109 (1995); D. Baruah, S. Choudhury, K.M. Singh, K.P. Ghatak, J. Phys. Conf. Series61, 80 (2007)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Basics of the Einstein Relation. In: Einstein Relation in Compound Semiconductors and their Nanostructures. Springer Series in Materials Science, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79557-5_1

Download citation

Publish with us

Policies and ethics