Skip to main content

Computational Mutagenesis of E. coli Lac Repressor: Insight into Structure-Function Relationships and Accurate Prediction of Mutant Activity

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4983))

Abstract

A computational mutagenesis methodology that utilizes a four-body, knowledge-based, statistical contact potential is applied toward quantifying relative changes (residual scores) to sequence-structure compatibility in E. coli lac repressor due to single amino acid residue substitutions. We show that these residual scores correlate well with experimentally measured relative changes in protein activity caused by the mutations. The approach also yields a measure of environmental perturbation at every residue position in the protein caused by the mutation (residual profile). Supervised learning with a decision tree algorithm, utilizing the residual profiles of over 4000 experimentally evaluated mutants for training, classifies the mutants based on activity with nearly 79% accuracy while achieving 0.80 area under the receiver operating characteristic curve. A trained decision tree model is subsequently used to infer the levels of activity for all remaining unexplored lac repressor mutants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, C.E., Lewis, M.: The Lac repressor: A second generation of structural and functional studies. Curr. Opin. Struct. Biol. 11, 19–25 (2001)

    Article  Google Scholar 

  2. Matthews, K.S.: The whole lactose repressor. Science 271, 1245–1246 (1996)

    Article  Google Scholar 

  3. Muller-Hill, B.: Some repressors of bacterial transcription. Curr. Opin. Microbiol. 1, 145–151 (1998)

    Article  Google Scholar 

  4. Pace, H.C., Kercher, M.A., Lu, P., Markiewicz, P., Miller, J.H., Chang, G., Lewis, M.: Lac repressor genetic map in real space. Trends Biochem. Sci. 22, 334–339 (1997)

    Article  Google Scholar 

  5. Lewis, M.: The lac repressor. C.R. Biol. 328, 521–548 (2005)

    Article  Google Scholar 

  6. Muller-Hill, B.: Suppressible regulator constitutive mutants of the lactose system in Escherichia coli. J. Mol. Biol. 15, 374–376 (1966)

    Google Scholar 

  7. Muller, J., Barker, A., Oehler, S., Muller-Hill, B.: Dimeric lac repressors exhibit phase-dependent co-operativity. J. Mol. Biol. 284, 851–857 (1998)

    Article  Google Scholar 

  8. Pfahl, M., Stockter, C., Gronenborn, B.: Genetic analysis of the active sites of lac repressor. Genetics 76, 669–679 (1974)

    Google Scholar 

  9. Platt, T., Files, J.G., Weber, K.: Lac repressor. Specific proteolytic destruction of the NH 2 -terminal region and loss of the deoxyribonucleic acid-binding activity. J. Biol. Chem. 248, 110–121 (1973)

    Google Scholar 

  10. Schmitz, A., Schmeissner, U., Miller, J.H.: Mutations affecting the quaternary structure of the lac repressor. J. Biol. Chem. 251, 3359–3366 (1976)

    Google Scholar 

  11. Alberti, S., Oehler, S., von Bergmann, B., Kramer, H., Muller-Hill, B.: Dimer-to-tetramer assembly of Lac repressor involves a leucine heptad repeat. New Biol. 3, 57–62 (1991)

    Google Scholar 

  12. Alberti, S., Oehler, S., von Bergmann, B., Muller-Hill, B.: Genetic analysis of the leucine heptad repeats of Lac repressor. Embo. J. 12, 3227–3236 (1993)

    Google Scholar 

  13. Suckow, J., Markiewicz, P., Kleina, L.G., Miller, J., Kisters-Woike, B., Muller-Hill, B.: Genetic studies of the Lac repressor. XV. J. Mol. Biol. 261, 509–523 (1996)

    Article  Google Scholar 

  14. Markiewicz, P., Kleina, L.G., Cruz, C., Ehret, S., Miller, J.H.: Genetic studies of the lac repressor XIV. J. Mol. Biol. 240, 421–433 (1994)

    Article  Google Scholar 

  15. Kleina, L.G., Miller, J.H.: Genetic studies of the lac repressor XIII. J. Mol. Biol. 212, 295–318 (1990)

    Article  Google Scholar 

  16. Vaisman, I.I., Tropsha, A., Zheng, W.: Compositional preferences in quadruplets of nearest neighbor residues in protein structures: Statistical geometry analysis. In: Proceedings of the IEEE Symposia on Intelligence and Systems, pp. 163–168 (1998)

    Google Scholar 

  17. Singh, R.K., Tropsha, A., Vaisman, I.I.: Delaunay tessellation of proteins: Four body nearest-neighbor propensities of amino acid residues. J. Comput. Biol. 3, 213–221 (1996)

    Article  Google Scholar 

  18. Masso, M., Lu, Z., Vaisman, I.I.: Computational mutagenesis studies of protein structure-function correlations. Proteins 64, 234–245 (2006)

    Article  Google Scholar 

  19. Verzilli, C.J., Whittaker, J.C., Stallard, N., Chasman, D.: A hierarchical Bayesian model for predicting the functional consequences of amino acid polymorphisms. Applied Statistics 54, 191–206 (2005)

    MATH  MathSciNet  Google Scholar 

  20. Krishnan, V.G., Westhead, D.R.: A comparative study of machine-learning methods to predict the effects of single nucleotide polymorphisms on protein function. Bioinformatics 19, 2199–2209 (2003)

    Article  Google Scholar 

  21. Karchin, R., Kelly, L., Sali, A.: Improving functional annotation of non-synonomous SNPs with information theory. Pac. Symp. Biocomput., 397–408 (2005)

    Google Scholar 

  22. Ng, P.C., Henikoff, S.: SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003)

    Article  Google Scholar 

  23. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  24. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software 22, 469–483 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bell, C.E., Lewis, M.: A closer view of the conformation of the Lac repressor bound to operator. Nat. Struct. Biol. 7, 209–214 (2000)

    Article  Google Scholar 

  26. Masso, M., Vaisman, I.I.: Comprehensive mutagenesis of HIV-1 protease: A computational geometry approach. Biochem. Biophys. Res. Commun. 305, 322–326 (2003)

    Article  Google Scholar 

  27. Quinlan, R.: C4.5: Programs for Machine Learning, San Mateo, CA. Morgan Kaufman Publishers, San Francisco (1993)

    Google Scholar 

  28. Frank, E., Hall, M., Trigg, L., Holmes, G., Witten, I.H.: Data mining in bioinformatics using Weka. Bioinformatics 20, 2479–2481 (2004)

    Article  Google Scholar 

  29. Fawcett, T.: ROC graphs: Notes and practical considerations for researchers. HPL-2003-4. Hewlett-Packard Labs, Palo Alto (2003)

    Google Scholar 

  30. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)

    Google Scholar 

  31. Provost, F., Domingos, P.: Well-trained PETs. CeDER Technical Report IS-00-04. Stern School of Business, New York University, New York (2001)

    Google Scholar 

  32. Dayhoff, M.O., Schwartz, R.M., Orcut, B.C. (eds.): A model for evolutionary change in proteins, Washington D.C. National Biomedical Research Foundation, vol. 5 (1978)

    Google Scholar 

  33. Chasman, D., Adams, R.M.: Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: Structure-based assessment of amino acid variation. J. Mol. Biol. 307, 683–706 (2001)

    Article  Google Scholar 

  34. Wrobel, J.A., Chao, S.F., Conrad, M.J., Merker, J.D., Swanstrom, R., Pielak, G.J., Hutchison, C.A.: A genetic approach for identifying critical residues in the fingers and palm subdomains of HIV-1 reverse transcriptase. Proc. Natl. Acad. Sci. U.S.A. 95, 638–645 (1998)

    Article  Google Scholar 

  35. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Raj Sunderraman Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masso, M., Hijazi, K., Parvez, N., Vaisman, I.I. (2008). Computational Mutagenesis of E. coli Lac Repressor: Insight into Structure-Function Relationships and Accurate Prediction of Mutant Activity. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2008. Lecture Notes in Computer Science(), vol 4983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79450-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79450-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79449-3

  • Online ISBN: 978-3-540-79450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics