Abstract
Given their economic importance, there is continuing research interest in providing better and better solutions to real-world scheduling problems. The models for such problems are increasingly complex and exhaustive search for optimal solutions is usually impractical. Moreover, difficulty in accurately modelling the problems means that mathematically “optimal” solutions may not actually be the best possible solutions in practice. Therefore heuristic methods are often used, which do not guarantee optimal or even near optimal solutions. The main goal of heuristics is to produce solutions of acceptable quality in reasonable time. The problem owners often prefer simple, easy to implement heuristic approaches which do not require significant amount of resources for their development and implementation [12]. However, such individual heuristics do not always perform well for the variety of problem instances which may be encountered in practice. There is a wide range of modern heuristics known from the literature which are specifically designed and tuned to solve certain classes of optimisation problems. These methods are based on the partial search of the solution space and often referred as metaheuristics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aarts, E.H.L., Korst, J.H.M., van Laarhoven, P.J.M.: Simulated annealing. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimisation, pp. 91–120. John Wiley & Sons, Chichester (1997)
Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop scheduling. Management Science 34, 391–401 (1988)
Ayob, M., Kendall, G.: A Monte Carlo hyper-heuristic to optimise component placement sequencing for multi head placement machine. In: Proceedings of the 2003 International Conference on Intelligent Technologies (InTech2003), Thailand, pp. 132–141 (2003)
Bai, R., Kendall, G.: An investigation of automated planograms using a simulated annealing based hyper-heuristic. In: Proceedings of the 5th Metaheuristics International Conference (MIC2003), Kyoto, Japan, August 23-25 (2003)
Brailsford, S., Potts, C., Smith, B.: Constraint satisfaction problems: Algorithms and applications. European Journal of Operational Research 119, 557–581 (1999)
Brelaz, D.: New methods to colour the vertices of the graph. Communications of the ACM 22, 251–256 (1979)
Brucker, P.: Scheduling Algorithms. Springer, Heidelberg (1995)
Burke, E., Dror, M., Petrovic, S., Qu, R.: Hybrid graph heuristics within a hyper-heuristic approach to exam timetabling problems. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Next Wave in Computing, Optimisation and Decision Technologies. Conference 9th INFORMS Computing Society Conference, vol. 9, pp. 79–91. Springer, Heidelberg (2005)
Burke, E.K., Landa Silva, J.D., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers. Selected Papers from the 5th Metaheuristics International Conference (MIC 2003). Operations Research/Computer Science Interfaces Series, vol. 32, pp. 129–158. Springer, Heidelberg (2005)
Burke, E., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper heuristic for timetabling problems. Technical Report NOTTCS-TR-2004-9, School of Computer Science and Information Technology, University of Nottingham (2004)
Burke, E., Petrovic, S., Qu, R.: Case based heuristic selection for examination timetabling. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp. 277–281. Orchid Country Club, Singapore (2002)
Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyperheuristics: an emerging direction in modern search technology. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer Academic Publishers, Dordrecht (2003)
Burke, E., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and rostering. Journal of Heuristics 9, 451–470 (2003)
Burke, E.K., MacCarthy, B.L., Petrovic, S., Qu, R.: Knowledge discovery in a hyper-heuristic for course timetabling using case-based reasoning. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 90–103. Springer, Heidelberg (2003)
Burke, E., Soubeiga, E.: Scheduling nurses using a tabu-search hyperheuristic. In: Kendall, G., Burke, E., Petrovic, S. (eds.) Proceedings of the 1st Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2003), Nottingham, UK, pp. 197–218 (2003)
Chakhlevitch, K.: A hyperheuristic methodology for real-world scheduling. PhD Thesis, Department of Computing, University of Bradford, UK (2006)
Cowling, P.I., Chakhlevitch, K.: Choosing the Fittest Subset of Low Level Heuristics in a Hyperheuristic Framework. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 23–33. Springer, Heidelberg (2005)
Cowling, P., Chakhlevitch, K.: Hyperheuristics for managing a large collection of low level heuristics to schedule personnel. In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation (CEC 2003), pp. 1214–1221. IEEE Press, Los Alamitos (2003)
Cowling, P., Chakhlevitch, K.: Using a large set of low level heuristics in a hyperheuristic approach to personnel scheduling. In: Dahal, K., Tan, K.C., Cowling, P.I. (eds.) Evolutionary Scheduling. Springer, Heidelberg (to appear, 2007)
Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem. In: Proceedings of 2002 Congress on Evolutionary Computation (CEC 2002), pp. 1185–1190. IEEE Computer Society Press, Honolulu, USA (2002)
Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)
Cowling, P., Kendall, G., Soubeiga, E.: A parameter-free hyperheuristic for scheduling a sales summit. In: Proceedings of the Third Metaheuristic International Conference (MIC 2001), Porto, Portugal, pp. 127–131 (2001)
Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a tool for rapid prototyping in scheduling and optimisation. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 1–10. Springer, Berlin (2002)
Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a robust optimisation method applied to nurse scheduling. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 851–860. Springer, Heidelberg (2002)
Dorndorf, U., Pesch, E.: Evolution based learning in a job shop scheduling environment. Computers and Operations Research 22, 25–40 (1995)
Dowsland, K., Soubeiga, E., Burke, E.: Solving a shipper rationalisation problem with a simulated annealing based hyperheuristic. Technical Report NOTTCSTR-2004-1, School of Computer Science and Information Technology, University of Nottingham (2004)
Dueck, G.: New optimisation heuristics: the great deluge algorithm and the record-to-record travel. Journal of Computational Physics 104, 86–92 (1993)
Fang, H.-L., Ross, P., Corne, D.: A promising hybrid GA/heuristic approach for open-shop scheduling problems. In: Cohn, A. (ed.) Proceedings of ECAI 1994: 11th European Conference on Artificial Intelligence, pp. 590–594. John Wiley, Chichester (1994)
Fink, E.: How to solve it automatically: selection among problem-solving methods. In: Proceedings of the 4th International Conference of AI Planning Systems, pp. 128–136. AAAI Press, Menlo Park (1998)
Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local jobshop scheduling rules. In: Factory Scheduling Conference, May 10-12, 1961, Carnegie Institute of Technology (1961)
Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local jobshop scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp. 225–251. Prentice Hall, Englewood Cliffs (1963)
Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Norwell (1997)
Glover, F., Laguna, M.: Tabu search. In: Reeves, C.R. (ed.) Modern Heuristic Techniques for Combinatorial Problems, pp. 70–150. Blackwell Scientific Publications, Malden (1993)
Gratch, J., Chien, S.: Adaptive problem-solving for large-scale scheduling problems: a case study. Journal of Artificial Intelligence Research 4, 365–396 (1996)
Gratch, J., Chien, S., DeJong, G.: Learning search control knowledge for deep space network scheduling. In: Proceedings of the 10th International Conference on Machine Learning, Amherst, USA, pp. 135–142 (1993)
Gupta, J.N.D., Sexton, R.S., Tunc, E.A.: Selecting scheduling heuristics using neural networks. INFORMS Journal on Computing 12, 150–162 (2000)
Han, L., Kendall, G.: Guided operators for a hyper-heuristic genetic algorithm. In: Gedeon, T.D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 807–820. Springer, Heidelberg (2003)
Han, L., Kendall, G.: An investigation of a tabu assisted hyper-heuristic genetic algorithm. In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation (CEC 2003), pp. 2230–2237. IEEE Computer Society Press, Canberra, Australia (2003)
Han, L., Kendall, G., Cowling, P.: An adaptive length chromosome hyperheuristic genetic algorithm for a trainer scheduling problem. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp. 267–271. Orchid Country Club, Singapore (2002)
Hansen, P., Mladenović, N.: Variable neighbourhood search: Principles and applications. European Journal of Operational Research 130, 449–467 (2001)
Hart, E., Ross, P.: A heuristic combination method for solving job-shop scheduling problems. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 845–854. Springer, Heidelberg (1998)
Hart, E., Ross, P., Nelson, J.: Solving a real-world problem using an evolving heuristically driven schedule builder. Evolutionary Computation 6, 61–80 (1998)
Hart, E., Ross, P., Nelson, J.: Scheduling chicken catching – An investigation into the success of a genetic algorithm on a real-world scheduling problem. Annals of Operations Research 92, 363–380 (1999)
Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)
Kendall, G., Mohamad, M.: Channel assignment in cellular communication using a Great Deluge hyper-heuristic. In: Proceedings of the 2004 IEEE International Conference on Networks (ICON 2004), Singapore, November 16-19 (2004)
Kendall, G., Mohamad, M.: Channel assignment optimisation using a hyperheuristic. In: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems (CIS 2004), Singapore, December 1-3 (2004)
Kendall, G., Mohd Hussin, N.: Tabu search hyper-heuristic approach to the examination timetabling problem at University of Technology MARA. In: Burke, E., Trick, M. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 199–217. Springer, Heidelberg (2005)
Kendall, G., Mohd Hussin, N.: An investigation of a tabu search based hyperheuristic for examination timetabling. In: Kendall, G., Burke, E., Petrovic, S., Gendreau, M. (eds.) Multidisciplinary Scheduling: Theory and Applications, Selected papers from the 1st Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2003), pp. 309–328. Springer, Heidelberg (2005)
Kendall, G., Soubeiga, E., Cowling, P.: Choice function and random hyperheuristics. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp. 667–671. Orchid Country Club, Singapore (2002)
Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learning. In: Proceedings of the 17th International Conference on Machine Learning, pp. 511–518 (2000)
Minton, S.: Integrating heuristics for constraint satisfaction problems: a case study. In: AAAI Proceedings (1993)
Minton, S.: An analytic learning system for specializing heuristics. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence (1993)
Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In: Resende, M., de Sousa, J. (eds.) Metaheuristics: Computer decision-making, pp. 523–544. Kluwer Academic Publishers, Dordrecht (2003)
Norenkov, I.: Scheduling and allocation for simulation and synthesis of CAD system hardware. In: Proceedings of EWITD 1994, East-West International Conference, Moscow, ICSTI, pp. 20–24 (1994)
Norenkov, I., Goodman, E.: Solving scheduling problems via evolutionary methods for rule sequence optimisation. In: Second World Conference on Soft Computing (WSC2) (June 1997)
Petrovic, S., Qu, R.: Case-based reasoning as a heuristic selector in a hyperheuristic for course timetabling problems. In: Proceedings of the 6th International Conference on Knowledge-Based Intelligent Information Engineering Systems and Allied Technologies (KES 2002), Crema, Italy, pp. 336–340 (2002)
Qu, R., Burke, E.: Hybrid variable neighbourhood hyperheuristics for exam timetabling problems. In: Proceedings of the 6th Metaheuristics International Conference (MIC 2005), Vienna, Austria (2005)
Randall, M., Abramson, D.: A general meta-heuristic based solver for combinatorial optimisation problems. Computational Optimisation and Applications 20, 185–210 (2001)
Ross, P., Marín-Blázquez, J.G., Schulenburg, S., Hart, E.: Learning a procedure that can solve hard bin-packing problems: a new GA-based approach to hyper-heuristics. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1295–1306. Springer, Heidelberg (2003)
Ross, P., Schulenburg, S., Marín-Bl ázquez, J.G., Hart, E.: Hyper-heuristics: learning to combine simple heuristics in bin-packing problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 942–948. Morgan Kaufmann, San Francisco (2002)
Soubeiga, E.: Development and application of hyperheuristics to personnel scheduling. PhD Thesis, Department of Computer Science, University of Nottingham, UK (2003)
Storer, R.H., Wu, S.D., Vaccari, R.: Problem and heuristic search space strategies for job shop scheduling. ORSA Journal on Computing 7, 453–467 (1995)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)
Terashima-Marín, H., Ross, P., Valenzuela-Rendón, M.: Evolution of constraint satisfaction strategies in examination timetabling. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 635–642. Morgan Kaufmann, San Francisco (1999)
Wilson, S.W.: Classifier systems based on accuracy. Evolutionary Computation 3, 149–175 (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Chakhlevitch, K., Cowling, P. (2008). Hyperheuristics: Recent Developments. In: Cotta, C., Sevaux, M., Sörensen, K. (eds) Adaptive and Multilevel Metaheuristics. Studies in Computational Intelligence, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79438-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-79438-7_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79437-0
Online ISBN: 978-3-540-79438-7
eBook Packages: EngineeringEngineering (R0)