Skip to main content

Hyperheuristics: Recent Developments

  • Chapter
Adaptive and Multilevel Metaheuristics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 136))

Abstract

Given their economic importance, there is continuing research interest in providing better and better solutions to real-world scheduling problems. The models for such problems are increasingly complex and exhaustive search for optimal solutions is usually impractical. Moreover, difficulty in accurately modelling the problems means that mathematically “optimal” solutions may not actually be the best possible solutions in practice. Therefore heuristic methods are often used, which do not guarantee optimal or even near optimal solutions. The main goal of heuristics is to produce solutions of acceptable quality in reasonable time. The problem owners often prefer simple, easy to implement heuristic approaches which do not require significant amount of resources for their development and implementation [12]. However, such individual heuristics do not always perform well for the variety of problem instances which may be encountered in practice. There is a wide range of modern heuristics known from the literature which are specifically designed and tuned to solve certain classes of optimisation problems. These methods are based on the partial search of the solution space and often referred as metaheuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aarts, E.H.L., Korst, J.H.M., van Laarhoven, P.J.M.: Simulated annealing. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimisation, pp. 91–120. John Wiley & Sons, Chichester (1997)

    Google Scholar 

  2. Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop scheduling. Management Science 34, 391–401 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ayob, M., Kendall, G.: A Monte Carlo hyper-heuristic to optimise component placement sequencing for multi head placement machine. In: Proceedings of the 2003 International Conference on Intelligent Technologies (InTech2003), Thailand, pp. 132–141 (2003)

    Google Scholar 

  4. Bai, R., Kendall, G.: An investigation of automated planograms using a simulated annealing based hyper-heuristic. In: Proceedings of the 5th Metaheuristics International Conference (MIC2003), Kyoto, Japan, August 23-25 (2003)

    Google Scholar 

  5. Brailsford, S., Potts, C., Smith, B.: Constraint satisfaction problems: Algorithms and applications. European Journal of Operational Research 119, 557–581 (1999)

    Article  MATH  Google Scholar 

  6. Brelaz, D.: New methods to colour the vertices of the graph. Communications of the ACM 22, 251–256 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brucker, P.: Scheduling Algorithms. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  8. Burke, E., Dror, M., Petrovic, S., Qu, R.: Hybrid graph heuristics within a hyper-heuristic approach to exam timetabling problems. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Next Wave in Computing, Optimisation and Decision Technologies. Conference 9th INFORMS Computing Society Conference, vol. 9, pp. 79–91. Springer, Heidelberg (2005)

    Google Scholar 

  9. Burke, E.K., Landa Silva, J.D., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers. Selected Papers from the 5th Metaheuristics International Conference (MIC 2003). Operations Research/Computer Science Interfaces Series, vol. 32, pp. 129–158. Springer, Heidelberg (2005)

    Google Scholar 

  10. Burke, E., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper heuristic for timetabling problems. Technical Report NOTTCS-TR-2004-9, School of Computer Science and Information Technology, University of Nottingham (2004)

    Google Scholar 

  11. Burke, E., Petrovic, S., Qu, R.: Case based heuristic selection for examination timetabling. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp. 277–281. Orchid Country Club, Singapore (2002)

    Google Scholar 

  12. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyperheuristics: an emerging direction in modern search technology. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer Academic Publishers, Dordrecht (2003)

    Chapter  Google Scholar 

  13. Burke, E., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and rostering. Journal of Heuristics 9, 451–470 (2003)

    Article  Google Scholar 

  14. Burke, E.K., MacCarthy, B.L., Petrovic, S., Qu, R.: Knowledge discovery in a hyper-heuristic for course timetabling using case-based reasoning. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 90–103. Springer, Heidelberg (2003)

    Google Scholar 

  15. Burke, E., Soubeiga, E.: Scheduling nurses using a tabu-search hyperheuristic. In: Kendall, G., Burke, E., Petrovic, S. (eds.) Proceedings of the 1st Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2003), Nottingham, UK, pp. 197–218 (2003)

    Google Scholar 

  16. Chakhlevitch, K.: A hyperheuristic methodology for real-world scheduling. PhD Thesis, Department of Computing, University of Bradford, UK (2006)

    Google Scholar 

  17. Cowling, P.I., Chakhlevitch, K.: Choosing the Fittest Subset of Low Level Heuristics in a Hyperheuristic Framework. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 23–33. Springer, Heidelberg (2005)

    Google Scholar 

  18. Cowling, P., Chakhlevitch, K.: Hyperheuristics for managing a large collection of low level heuristics to schedule personnel. In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation (CEC 2003), pp. 1214–1221. IEEE Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  19. Cowling, P., Chakhlevitch, K.: Using a large set of low level heuristics in a hyperheuristic approach to personnel scheduling. In: Dahal, K., Tan, K.C., Cowling, P.I. (eds.) Evolutionary Scheduling. Springer, Heidelberg (to appear, 2007)

    Google Scholar 

  20. Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem. In: Proceedings of 2002 Congress on Evolutionary Computation (CEC 2002), pp. 1185–1190. IEEE Computer Society Press, Honolulu, USA (2002)

    Chapter  Google Scholar 

  21. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Cowling, P., Kendall, G., Soubeiga, E.: A parameter-free hyperheuristic for scheduling a sales summit. In: Proceedings of the Third Metaheuristic International Conference (MIC 2001), Porto, Portugal, pp. 127–131 (2001)

    Google Scholar 

  23. Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a tool for rapid prototyping in scheduling and optimisation. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 1–10. Springer, Berlin (2002)

    Chapter  Google Scholar 

  24. Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a robust optimisation method applied to nurse scheduling. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 851–860. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Dorndorf, U., Pesch, E.: Evolution based learning in a job shop scheduling environment. Computers and Operations Research 22, 25–40 (1995)

    Article  MATH  Google Scholar 

  26. Dowsland, K., Soubeiga, E., Burke, E.: Solving a shipper rationalisation problem with a simulated annealing based hyperheuristic. Technical Report NOTTCSTR-2004-1, School of Computer Science and Information Technology, University of Nottingham (2004)

    Google Scholar 

  27. Dueck, G.: New optimisation heuristics: the great deluge algorithm and the record-to-record travel. Journal of Computational Physics 104, 86–92 (1993)

    Article  MATH  Google Scholar 

  28. Fang, H.-L., Ross, P., Corne, D.: A promising hybrid GA/heuristic approach for open-shop scheduling problems. In: Cohn, A. (ed.) Proceedings of ECAI 1994: 11th European Conference on Artificial Intelligence, pp. 590–594. John Wiley, Chichester (1994)

    Google Scholar 

  29. Fink, E.: How to solve it automatically: selection among problem-solving methods. In: Proceedings of the 4th International Conference of AI Planning Systems, pp. 128–136. AAAI Press, Menlo Park (1998)

    Google Scholar 

  30. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local jobshop scheduling rules. In: Factory Scheduling Conference, May 10-12, 1961, Carnegie Institute of Technology (1961)

    Google Scholar 

  31. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local jobshop scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp. 225–251. Prentice Hall, Englewood Cliffs (1963)

    Google Scholar 

  32. Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Norwell (1997)

    MATH  Google Scholar 

  33. Glover, F., Laguna, M.: Tabu search. In: Reeves, C.R. (ed.) Modern Heuristic Techniques for Combinatorial Problems, pp. 70–150. Blackwell Scientific Publications, Malden (1993)

    Google Scholar 

  34. Gratch, J., Chien, S.: Adaptive problem-solving for large-scale scheduling problems: a case study. Journal of Artificial Intelligence Research 4, 365–396 (1996)

    Google Scholar 

  35. Gratch, J., Chien, S., DeJong, G.: Learning search control knowledge for deep space network scheduling. In: Proceedings of the 10th International Conference on Machine Learning, Amherst, USA, pp. 135–142 (1993)

    Google Scholar 

  36. Gupta, J.N.D., Sexton, R.S., Tunc, E.A.: Selecting scheduling heuristics using neural networks. INFORMS Journal on Computing 12, 150–162 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Han, L., Kendall, G.: Guided operators for a hyper-heuristic genetic algorithm. In: Gedeon, T.D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 807–820. Springer, Heidelberg (2003)

    Google Scholar 

  38. Han, L., Kendall, G.: An investigation of a tabu assisted hyper-heuristic genetic algorithm. In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation (CEC 2003), pp. 2230–2237. IEEE Computer Society Press, Canberra, Australia (2003)

    Google Scholar 

  39. Han, L., Kendall, G., Cowling, P.: An adaptive length chromosome hyperheuristic genetic algorithm for a trainer scheduling problem. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp. 267–271. Orchid Country Club, Singapore (2002)

    Google Scholar 

  40. Hansen, P., Mladenović, N.: Variable neighbourhood search: Principles and applications. European Journal of Operational Research 130, 449–467 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Hart, E., Ross, P.: A heuristic combination method for solving job-shop scheduling problems. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 845–854. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  42. Hart, E., Ross, P., Nelson, J.: Solving a real-world problem using an evolving heuristically driven schedule builder. Evolutionary Computation 6, 61–80 (1998)

    Article  Google Scholar 

  43. Hart, E., Ross, P., Nelson, J.: Scheduling chicken catching – An investigation into the success of a genetic algorithm on a real-world scheduling problem. Annals of Operations Research 92, 363–380 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  45. Kendall, G., Mohamad, M.: Channel assignment in cellular communication using a Great Deluge hyper-heuristic. In: Proceedings of the 2004 IEEE International Conference on Networks (ICON 2004), Singapore, November 16-19 (2004)

    Google Scholar 

  46. Kendall, G., Mohamad, M.: Channel assignment optimisation using a hyperheuristic. In: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems (CIS 2004), Singapore, December 1-3 (2004)

    Google Scholar 

  47. Kendall, G., Mohd Hussin, N.: Tabu search hyper-heuristic approach to the examination timetabling problem at University of Technology MARA. In: Burke, E., Trick, M. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 199–217. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  48. Kendall, G., Mohd Hussin, N.: An investigation of a tabu search based hyperheuristic for examination timetabling. In: Kendall, G., Burke, E., Petrovic, S., Gendreau, M. (eds.) Multidisciplinary Scheduling: Theory and Applications, Selected papers from the 1st Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2003), pp. 309–328. Springer, Heidelberg (2005)

    Google Scholar 

  49. Kendall, G., Soubeiga, E., Cowling, P.: Choice function and random hyperheuristics. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp. 667–671. Orchid Country Club, Singapore (2002)

    Google Scholar 

  50. Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learning. In: Proceedings of the 17th International Conference on Machine Learning, pp. 511–518 (2000)

    Google Scholar 

  51. Minton, S.: Integrating heuristics for constraint satisfaction problems: a case study. In: AAAI Proceedings (1993)

    Google Scholar 

  52. Minton, S.: An analytic learning system for specializing heuristics. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence (1993)

    Google Scholar 

  53. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In: Resende, M., de Sousa, J. (eds.) Metaheuristics: Computer decision-making, pp. 523–544. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  54. Norenkov, I.: Scheduling and allocation for simulation and synthesis of CAD system hardware. In: Proceedings of EWITD 1994, East-West International Conference, Moscow, ICSTI, pp. 20–24 (1994)

    Google Scholar 

  55. Norenkov, I., Goodman, E.: Solving scheduling problems via evolutionary methods for rule sequence optimisation. In: Second World Conference on Soft Computing (WSC2) (June 1997)

    Google Scholar 

  56. Petrovic, S., Qu, R.: Case-based reasoning as a heuristic selector in a hyperheuristic for course timetabling problems. In: Proceedings of the 6th International Conference on Knowledge-Based Intelligent Information Engineering Systems and Allied Technologies (KES 2002), Crema, Italy, pp. 336–340 (2002)

    Google Scholar 

  57. Qu, R., Burke, E.: Hybrid variable neighbourhood hyperheuristics for exam timetabling problems. In: Proceedings of the 6th Metaheuristics International Conference (MIC 2005), Vienna, Austria (2005)

    Google Scholar 

  58. Randall, M., Abramson, D.: A general meta-heuristic based solver for combinatorial optimisation problems. Computational Optimisation and Applications 20, 185–210 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  59. Ross, P., Marín-Blázquez, J.G., Schulenburg, S., Hart, E.: Learning a procedure that can solve hard bin-packing problems: a new GA-based approach to hyper-heuristics. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1295–1306. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  60. Ross, P., Schulenburg, S., Marín-Bl ázquez, J.G., Hart, E.: Hyper-heuristics: learning to combine simple heuristics in bin-packing problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 942–948. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  61. Soubeiga, E.: Development and application of hyperheuristics to personnel scheduling. PhD Thesis, Department of Computer Science, University of Nottingham, UK (2003)

    Google Scholar 

  62. Storer, R.H., Wu, S.D., Vaccari, R.: Problem and heuristic search space strategies for job shop scheduling. ORSA Journal on Computing 7, 453–467 (1995)

    MATH  Google Scholar 

  63. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  64. Terashima-Marín, H., Ross, P., Valenzuela-Rendón, M.: Evolution of constraint satisfaction strategies in examination timetabling. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 635–642. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  65. Wilson, S.W.: Classifier systems based on accuracy. Evolutionary Computation 3, 149–175 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Carlos Cotta Marc Sevaux Kenneth Sörensen

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chakhlevitch, K., Cowling, P. (2008). Hyperheuristics: Recent Developments. In: Cotta, C., Sevaux, M., Sörensen, K. (eds) Adaptive and Multilevel Metaheuristics. Studies in Computational Intelligence, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79438-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79438-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79437-0

  • Online ISBN: 978-3-540-79438-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics